2次方程式 $x^2 + 2x - 2 = 0$ を解く問題です。

代数学二次方程式解の公式平方根
2025/5/29

1. 問題の内容

2次方程式 x2+2x2=0x^2 + 2x - 2 = 0 を解く問題です。

2. 解き方の手順

この2次方程式は因数分解できないので、解の公式を使います。
2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解の公式は
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
です。
今回の問題では、a=1a = 1, b=2b = 2, c=2c = -2 なので、解の公式に代入すると、
x=2±224(1)(2)2(1)x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-2)}}{2(1)}
x=2±4+82x = \frac{-2 \pm \sqrt{4 + 8}}{2}
x=2±122x = \frac{-2 \pm \sqrt{12}}{2}
x=2±232x = \frac{-2 \pm 2\sqrt{3}}{2}
x=1±3x = -1 \pm \sqrt{3}

3. 最終的な答え

x=1+3x = -1 + \sqrt{3}, x=13x = -1 - \sqrt{3}

「代数学」の関連問題

$4x^2 + 4y^2 + z^2 = 4$ および $2x + 2y + z = 3$ を満たし、$x < y < z$ であるとき、$2xy - x - y$ の取りうる値の範囲を求める問題です...

連立方程式不等式二次曲線変数変換範囲
2025/5/30

対数関数のグラフが与えられており、そのグラフを表す式が $y = \log_a(x+b) + c$ と与えられています。このとき、$a, b, c$ の値を求める問題です。

対数関数グラフ関数の決定
2025/5/30

$\sum_{k=1}^{n} (3k^2 - 7k + 4)$ を求める問題です。

数列シグマ等差数列等比数列
2025/5/30

与えられた対数関数のグラフから、$y = \log_a(x+b) + c$ の $a$, $b$, $c$ の値を求める。

対数関数グラフ関数の決定漸近線
2025/5/30

画像に示された指数関数のグラフの式が $y = ca^x + b$ で与えられています。このグラフから $a$, $b$, $c$ の値を求め、$y = ca^x + b$ を決定することを求められて...

指数関数グラフ方程式漸近線関数
2025/5/30

与えられたグラフから指数関数 $y = ca^x + b$ と対数関数 $y = \log_a(x+b) + c$ の各係数 $a, b, c$ の値を求めます。

指数関数対数関数グラフ方程式係数
2025/5/30

与えられた3つの式について、二重根号を外して簡単にせよという問題です。 (1) $\sqrt{7+2\sqrt{10}}$ (2) $\sqrt{12-6\sqrt{3}}$ (3) $\sqrt{2...

二重根号根号式の計算平方根
2025/5/30

練習問題25の(2)と(3)の式を、例11のような和の形で記述する。 (2) $\sum_{k=3}^{8} 2^{k-1}$ (3) $\sum_{k=1}^{n-1} \frac{1}{k}$

シグマ級数数列和の記号
2025/5/30

与えられた数列の和を求める問題です。具体的には、$\sum_{k=1}^{n}(2k-1)$ を計算します。

数列シグマ級数代数
2025/5/30

与えられた3つの方程式または不等式を解く問題です。 (1) $|x-3| = 2x$ (2) $|x-4| \leq 2x+1$ (3) $|x+1| > 5x$

絶対値不等式方程式場合分け一次不等式一次方程式
2025/5/30