ある弁当店での商品別販売数に関する表があり、弁当Bの5週目の販売数を推測する必要があります。弁当Bの1週目から4週目までの販売数は、それぞれ599食、953食、717食、1076食です。

応用数学データ分析販売予測時系列分析
2025/5/29

1. 問題の内容

ある弁当店での商品別販売数に関する表があり、弁当Bの5週目の販売数を推測する必要があります。弁当Bの1週目から4週目までの販売数は、それぞれ599食、953食、717食、1076食です。

2. 解き方の手順

弁当Bの販売数の推移を分析します。
* 1週目から2週目: 953599=354953 - 599 = 354
* 2週目から3週目: 717953=236717 - 953 = -236
* 3週目から4週目: 1076717=3591076 - 717 = 359
増減の幅が一定ではないため、平均的な増減を計算して5週目の販売数を予測する方法は適切ではありません。
1週目から4週目にかけて、販売数が大きく変動しているものの、増加傾向が見られます。
選択肢の中から、4週目の販売数(1076食)に近い値を選ぶのが妥当と考えられます。

3. 最終的な答え

選択肢の中で1076に一番近いのは914食です.
**914食**

「応用数学」の関連問題

x-z平面上の2次元ベクトル場 $\vec{F} = -\frac{1}{2}z\hat{i} + x\hat{k}$ の回転を計算します。ここで $\hat{i}$ はx軸方向の単位ベクトル、$\h...

ベクトル場回転偏微分ベクトル解析
2025/5/31

$x$-$y$ 平面上の2次元ベクトル場 $\vec{F} = -2\vec{i} + x\vec{j}$ を図示せよ。

ベクトル場ベクトル解析図示
2025/5/31

バネ定数$k$のバネで壁に取り付けられた、質量$m$の2つの振動子が、バネ定数$k'$のバネで繋がれた連成振動系について考察します。 (a) それぞれの質点の平衡位置からの変位を$x_1$, $x_2...

力学振動連成振動微分方程式線形代数
2025/5/31

与えられた式 $T = 2\pi \sqrt{\frac{I}{Mgh}}$, $h = l+r$, $I = m(l+r)^2 + \frac{2}{5}mr^2$ から、$g = \frac{4\...

物理公式変形数式処理力学
2025/5/31

空欄1~5に当てはまる選択肢を1~10の中から選ぶ問題です。

統計共分散相関係数
2025/5/30

与えられた経済学の問題は、ラスパイレス価格指数($P_L$)とパーシェ価格指数($P_P$)の関係について考察し、文章中の空欄を埋める問題です。空欄は全部で5つあります。

経済学価格指数統計学共分散数式展開
2025/5/30

ラスパイレス価格指数 $P_L$ とパーシェ価格指数 $P_P$ の関係に関する穴埋め問題です。 与えられた式を参考に、空欄1から5に当てはまるものを選択します。

経済学価格指数ラスパイレス指数パーシェ指数統計
2025/5/30

画像に示された数式に基づいて、空欄 [2] と [3] を埋める問題です。特に、共分散 $s_{PQ}$ の式 $s_{PQ} = \sum_{i=1}^{n} w_{i0} (\frac{P_{it...

統計共分散数式展開データ分析
2025/5/30

画像に示された数式を基に、空欄 2 と 5 を埋める問題です。また、与えられた情報から導かれる関係式を理解することが求められています。

数式処理共分散統計
2025/5/30

与えられたラスパイレス価格指数 $P_L$、パーシェ価格指数 $P_P$、ウェイト $w_{i0}$、共分散 $s_{PQ}$、標準偏差 $s_P, s_Q$、相関係数 $r$ を用いて、空欄を埋める...

価格指数統計加重平均共分散相関係数
2025/5/30