与えられた式 $a(b-c)^2 + b(c-a)^2 + c(a-b)^2 + 8abc$ を展開し、整理して簡単にしてください。

代数学式の展開因数分解多項式代数式
2025/5/30

1. 問題の内容

与えられた式 a(bc)2+b(ca)2+c(ab)2+8abca(b-c)^2 + b(c-a)^2 + c(a-b)^2 + 8abc を展開し、整理して簡単にしてください。

2. 解き方の手順

まず、各項の二乗を展開します。
a(bc)2=a(b22bc+c2)=ab22abc+ac2a(b-c)^2 = a(b^2 - 2bc + c^2) = ab^2 - 2abc + ac^2
b(ca)2=b(c22ac+a2)=bc22abc+ba2b(c-a)^2 = b(c^2 - 2ac + a^2) = bc^2 - 2abc + ba^2
c(ab)2=c(a22ab+b2)=ca22abc+cb2c(a-b)^2 = c(a^2 - 2ab + b^2) = ca^2 - 2abc + cb^2
これらの展開結果と 8abc8abc を足し合わせます。
ab22abc+ac2+bc22abc+ba2+ca22abc+cb2+8abcab^2 - 2abc + ac^2 + bc^2 - 2abc + ba^2 + ca^2 - 2abc + cb^2 + 8abc
同類項をまとめます。具体的には、abcabcの項をまとめます。2abc2abc2abc+8abc=2abc-2abc - 2abc - 2abc + 8abc = 2abc
したがって、
ab2+ac2+bc2+ba2+ca2+cb2+2abcab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 + 2abc
これを並び替えると、
a2b+a2c+b2a+b2c+c2a+c2b+2abca^2b + a^2c + b^2a + b^2c + c^2a + c^2b + 2abc
次に、この式を因数分解することを試みます。
元の式は、
a2b+a2c+b2a+b2c+c2a+c2b+2abca^2b + a^2c + b^2a + b^2c + c^2a + c^2b + 2abc
これは、
(a+b)(b+c)(c+a)(a+b)(b+c)(c+a) と等しくなります。
(a+b)(bc+c2+b2+bc)=(a+b)(b2+c2+2bc)=(a+b)(b+c)2=(a+b)(c+b)(c+a)(a+b)(bc+c^2+b^2+bc) = (a+b)(b^2+c^2+2bc) = (a+b)(b+c)^2 = (a+b)(c+b)(c+a)
(a+b)(b+c)(c+a)=(ab+ac+b2+bc)(c+a)=abc+a2b+ac2+a2c+b2c+ab2+bc2+abc=a2b+a2c+b2a+b2c+c2a+c2b+2abc(a+b)(b+c)(c+a) = (ab+ac+b^2+bc)(c+a) = abc+a^2b+ac^2+a^2c+b^2c+ab^2+bc^2+abc = a^2b+a^2c+b^2a+b^2c+c^2a+c^2b+2abc

3. 最終的な答え

(a+b)(b+c)(c+a)(a+b)(b+c)(c+a)

「代数学」の関連問題

与えられた行列 $B$ を簡約階数行列に変形し、その階数を求める問題です。 $B = \begin{pmatrix} 1 & 0 & -2 & 1 \\ -2 & 2 & 3 & -3 \\ 1 & ...

線形代数行列階数簡約化
2025/5/31

与えられた行列 $B$ を簡約階数行列に変形し、その階数を求める問題です。行列 $B$ は以下の通りです。 $B = \begin{pmatrix} 1 & 0 & -2 & 1 \\ -2 & 2 ...

線形代数行列簡約階数階数
2025/5/31

与えられた行列 $B$ の階数を求めます。 $B = \begin{pmatrix} 1 & 0 & -2 & 1 \\ -2 & 2 & 3 & -3 \\ 1 & 4 & -4 & -1 \end...

線形代数行列階数簡約化
2025/5/31

与えられた行列 $B$ を行基本変形によって簡約化する問題です。

線形代数行列行基本変形簡約化
2025/5/31

与えられた式 $(x+y)^2 - 7(x+y) + 12$ を因数分解する問題です。

因数分解二次式多項式
2025/5/31

乗法公式を利用して、$(a+b+c)^2$ を展開する。

展開多項式乗法公式
2025/5/31

与えられた2次式 $4x^2 - 12x + 5$ を因数分解せよ。図の枠を埋めることで、たすき掛けを用いた因数分解を行う。

因数分解二次式たすき掛け
2025/5/31

与えられた2つの行列の積を計算する問題です。 行列はそれぞれ、 $ \begin{pmatrix} 2 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix} $ と $ \begi...

行列行列の積線形代数
2025/5/31

与えられた2つの行列の積を計算する問題です。 $ \begin{pmatrix} 2 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & ...

行列行列の積線形代数
2025/5/31

与えられた二次式 $3x^2 + 5x + 2$ を因数分解する問題です。

因数分解二次式二次方程式
2025/5/31