与えられた行列 $B$ を簡約階数行列に変形し、その階数を求める問題です。 $B = \begin{pmatrix} 1 & 0 & -2 & 1 \\ -2 & 2 & 3 & -3 \\ 1 & 4 & -4 & -1 \end{pmatrix}$
2025/5/31
1. 問題の内容
与えられた行列 を簡約階数行列に変形し、その階数を求める問題です。
2. 解き方の手順
まず、行列に対して、行基本変形を施します。画像に示されている手順に従い、以下の操作を行います。
ステップ1: 2行目に、1行目の2倍を加える。
ステップ2: 3行目に、1行目の-1倍を加える。
計算すると、
次に、2行目を1/2倍します。
最後に、3行目から2行目の4倍を引きます。
簡約階数行列はとなります。
この行列の階数は、0でない行の数に等しく、2です。
3. 最終的な答え
階数: 2