与えられた関数の極限を求める問題です。具体的には、$x$ が 2 に近づくときの $x^2 - 1$ の極限を計算します。つまり、 $\lim_{x \to 2} (x^2 - 1)$ を求めます。

解析学極限連続関数関数の極限
2025/3/26

1. 問題の内容

与えられた関数の極限を求める問題です。具体的には、xx が 2 に近づくときの x21x^2 - 1 の極限を計算します。つまり、
limx2(x21)\lim_{x \to 2} (x^2 - 1)
を求めます。

2. 解き方の手順

この関数 f(x)=x21f(x) = x^2 - 1 は連続関数であるため、極限は単に xx に 2 を代入することで求めることができます。
ステップ1: xx に 2 を代入します。
f(2)=(2)21f(2) = (2)^2 - 1
ステップ2: 計算を実行します。
f(2)=41=3f(2) = 4 - 1 = 3

3. 最終的な答え

limx2(x21)=3\lim_{x \to 2} (x^2 - 1) = 3

「解析学」の関連問題

関数 $f(\theta) = (a-\frac{1}{2})\sin^2\theta - (a+\frac{1}{2})\cos^2\theta + 2(a+1)\sin\theta\cos\the...

三角関数最大値最小値三角関数の合成微分
2025/4/4

$4\cos^2 x + 2\cos x > 2\sqrt{2}\cos x + \sqrt{2}$ を $0 \le x < 2\pi$ の範囲で解く問題です。

三角関数不等式解の公式三角不等式
2025/4/4

$0 \le x \le \pi$ の範囲で、不等式 $2\sin x - 2\cos x > \sqrt{6}$ を満たす $x$ の範囲を求める問題です。

三角関数不等式三角関数の合成sin関数
2025/4/4

与えられた関数 $f(x) = -6x^3 + 4x - t^2 + 3t$ の不定積分を求める問題です。ただし、$t$ は $x$ に無関係な定数として扱います。

不定積分多項式積分
2025/4/4

不定積分 $\int (-5t^2 - 2t + 3x^2) dt$ を求めよ。ただし、$x$ は $t$ に無関係とする。

不定積分積分変数変換定数
2025/4/4

不定積分 $\int (-4x + 5t) dx$ を求めなさい。ただし、$t$は $x$ に無関係な定数とする。

不定積分積分変数変換
2025/4/4

不定積分 $\int (-3x^3 + 4x^2 - 3x + 3t^2 - t) dx$ を求めなさい。ただし、$t$ は $x$ に無関係とする。

不定積分積分多項式変数t
2025/4/4

不定積分 $\int (-4x + 5t) \, dx$ を求めなさい。ただし、$t$は$x$に無関係な定数とする。

不定積分積分定数
2025/4/4

座標平面上において、曲線 $y = \frac{2}{x+1}$ に関して、 - 直線 $y=x$ に関して対称な曲線を $C_1$ とする。 - 直線 $y=-1$ に関して対称な曲線を $C_2$...

関数の対称移動漸近線分数関数
2025/4/4

次の不定積分を計算してください。ただし、$r$は$x$に無関係な定数とします。 $\int (3x^2 - 4x + r) dx$

不定積分積分多項式
2025/4/4