与えられた式 $a^2(b-c) + b^2(c-a) + c^2(a-b)$ を因数分解する問題です。

代数学因数分解多項式
2025/5/31

1. 問題の内容

与えられた式 a2(bc)+b2(ca)+c2(ab)a^2(b-c) + b^2(c-a) + c^2(a-b) を因数分解する問題です。

2. 解き方の手順

まず、式を展開します。
a2(bc)+b2(ca)+c2(ab)=a2ba2c+b2cb2a+c2ac2ba^2(b-c) + b^2(c-a) + c^2(a-b) = a^2b - a^2c + b^2c - b^2a + c^2a - c^2b
次に、aa について整理します。
a2ba2c+b2cb2a+c2ac2b=(bc)a2+(c2b2)a+(b2cc2b)a^2b - a^2c + b^2c - b^2a + c^2a - c^2b = (b-c)a^2 + (c^2 - b^2)a + (b^2c - c^2b)
さらに整理します。
(bc)a2+(c2b2)a+(b2cc2b)=(bc)a2(b2c2)a+bc(bc)(b-c)a^2 + (c^2 - b^2)a + (b^2c - c^2b) = (b-c)a^2 - (b^2 - c^2)a + bc(b - c)
=(bc)a2(b+c)(bc)a+bc(bc)= (b-c)a^2 - (b+c)(b-c)a + bc(b-c)
(bc)(b-c)でくくります。
(bc)a2(b+c)(bc)a+bc(bc)=(bc)[a2(b+c)a+bc](b-c)a^2 - (b+c)(b-c)a + bc(b-c) = (b-c)[a^2 - (b+c)a + bc]
括弧の中を因数分解します。
a2(b+c)a+bc=(ab)(ac)a^2 - (b+c)a + bc = (a-b)(a-c)
したがって、
(bc)[a2(b+c)a+bc]=(bc)(ab)(ac)(b-c)[a^2 - (b+c)a + bc] = (b-c)(a-b)(a-c)
符号を調整して、一般的に見やすい形にします。
(bc)(ab)(ac)=(ab)(bc)(ca)(b-c)(a-b)(a-c) = -(a-b)(b-c)(c-a)

3. 最終的な答え

(ab)(bc)(ca)-(a-b)(b-c)(c-a) または (ab)(bc)(ca)(a-b)(b-c)(c-a)1-1
(ab)(bc)(ac)(1)(a-b)(b-c)(a-c) (-1)
(ab)(bc)(ca)(1)(a-b)(b-c)(c-a)(-1)
したがって答えは
(ab)(bc)(ca)-(a-b)(b-c)(c-a)
または
(ab)(cb)(ac)(a-b)(c-b)(a-c)
または
(ba)(bc)(ca)(b-a)(b-c)(c-a)
など。
(ab)(bc)(ca)-(a-b)(b-c)(c-a) が最も一般的な書き方です。
(ab)(bc)(ca)-(a-b)(b-c)(c-a)

「代数学」の関連問題

xy平面上に2つの放物線$C: y=(x-a)^2+b$ と $D: y=-x^2$ がある。 (1) $C$ と $D$ が異なる2点で交わり、その2交点のx座標の差が1となるように実数$a, b$...

二次関数放物線軌跡判別式交点
2025/6/2

与えられた行列の積を計算する問題です。 $(2 \ 3 \ -1) \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 5 & 3 \end{pmatrix} \begin{pmat...

行列行列の積線形代数
2025/6/2

与えられた行列 A, B, C, D, E, F に対して、以下の条件を満たす行列をそれぞれすべて選択する問題です。 (1) 単位行列 (2) 交代行列 (3) 対角行列 (4) 正則でない正方行列 ...

線形代数行列正則単位行列交代行列対角行列
2025/6/2

2つの関数 $y = x^2$ と $y = x + k$ のグラフが接する時の $k$ の値を求める。

二次関数判別式接する二次方程式
2025/6/2

関数 $y = -|x-2| + 3$ (これを式①とします) について、以下の問いに答えます。 (1) 式①のグラフを描く。 (2) $-1 \le x \le 3$ の範囲における式①の値域を求め...

絶対値グラフ値域不等式
2025/6/2

(1) 行列 $\begin{pmatrix} 5 & 2 \\ 10 & a \end{pmatrix}$ が正則であるための条件と、その逆行列を求める。 (2) $\begin{pmatrix} ...

行列逆行列行列式線形代数
2025/6/2

行列 $A = \begin{pmatrix} 5 & 2 \\ 1 & 1 \end{pmatrix}$ と $B = \begin{pmatrix} 2 & 2 \\ 1 & 4 \end{pma...

行列逆行列連立方程式
2025/6/2

次の式の取りうる値の範囲を求める問題です。 (1) $ \sin\theta + 2 $ ($ 0^\circ \leq \theta \leq 180^\circ $) (2) $ 3\cos\th...

三角関数関数の最大最小不等式
2025/6/2

## 1. 問題の内容

式の計算因数分解式の値不等式連立不等式
2025/6/2

## 1. 問題の内容

行列行列の加算行列の乗算転置行列逆行列行列式
2025/6/2