与えられた方程式は、$x - 2040 - 0.55x = 228$ です。この方程式を解いて、$x$ の値を求める必要があります。

代数学一次方程式方程式解の公式
2025/5/31

1. 問題の内容

与えられた方程式は、x20400.55x=228x - 2040 - 0.55x = 228 です。この方程式を解いて、xx の値を求める必要があります。

2. 解き方の手順

まず、xx の項をまとめます。
x0.55x=0.45xx - 0.55x = 0.45x なので、方程式は次のようになります。
0.45x2040=2280.45x - 2040 = 228
次に、定数項 2040-2040 を右辺に移項します。
両辺に 20402040 を加えることで、
0.45x=228+20400.45x = 228 + 2040
0.45x=22680.45x = 2268
最後に、xx について解くために、両辺を 0.450.45 で割ります。
x=22680.45x = \frac{2268}{0.45}
x=5040x = 5040

3. 最終的な答え

x=5040x = 5040

「代数学」の関連問題

与えられた不等式を証明し、等号が成り立つ条件を求める問題です。 (1) $x^2 + x + 1 \geq 3x$ (2) $2x^2 + 3y^2 \geq 4xy$

不等式証明等号成立条件二次不等式
2025/6/2

与えられた不等式 $2x^2 + 3y^2 \geq 4xy$ が常に成り立つことを証明する問題です。

不等式証明平方完成
2025/6/2

不等式 $x^2 + x + 1 \geq 3x$ を証明し、等号が成り立つ条件を求める問題です。

不等式二次不等式因数分解実数
2025/6/2

$x > -3$ かつ $y > 2$ のとき、$xy - 6 > 2x - 3y$ を証明する。

不等式証明代数操作
2025/6/2

複数の数学の問題が出題されています。それぞれの問題を個別に解答します。

一次関数連立方程式グラフ直線の式座標図形
2025/6/2

与えられた不等式 $3x + 1 \leq 2x - 5$ を解き、$x$ の範囲を求める問題です。

不等式一次不等式解の範囲
2025/6/2

与えられた不等式 $4 + x < 4x - 2$ を解き、$x$ の範囲を求める問題です。

不等式一次不等式解の範囲
2025/6/2

与えられた7つの行列の行列式を計算する問題です。

行列式線形代数行列
2025/6/2

次の3つの問題に答えます。 (1) 直線 $y = 2x + a$ と双曲線 $x^2 - y^2 = 1$ が異なる2点で交わるような $a$ の値の範囲を求めます。 (2) 直線 $y = mx ...

二次曲線判別式接線共有点双曲線楕円放物線
2025/6/2

数列$\{a_n\}$があり、初項は2である。初項から第n項までの和を$S_n$とする。数列$\{S_n\}$は漸化式 $S_{n+1} = \frac{1}{2}S_n + 3^{n+1}$ ($n...

数列漸化式等比数列分数式
2025/6/2