与えられた積分を計算します。 $\int (-7x^2) dx$

解析学積分不定積分べき乗積分
2025/3/26

1. 問題の内容

与えられた積分を計算します。
(7x2)dx\int (-7x^2) dx

2. 解き方の手順

積分定数をCとして、与えられた積分を計算します。
まず、積分の線形性より、定数を積分の外に出すことができます。
(7x2)dx=7x2dx\int (-7x^2) dx = -7 \int x^2 dx
次に、x2x^2の積分を計算します。べきの積分公式xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + Cを適用します。
x2dx=x2+12+1+C=x33+C\int x^2 dx = \frac{x^{2+1}}{2+1} + C = \frac{x^3}{3} + C
したがって、
7x2dx=7(x33+C)=73x3+C-7 \int x^2 dx = -7 (\frac{x^3}{3} + C) = -\frac{7}{3}x^3 + C'

3. 最終的な答え

73x3+C-\frac{7}{3}x^3 + C

「解析学」の関連問題

(4) 定積分 $\int_{2}^{e+1} \frac{dy}{1-y}$ を計算します。 (5) 定積分 $\int_{0}^{\pi} \sin{\theta} d\theta$ を計算します...

定積分積分積分計算
2025/7/16

関数 $y = x^{\cos^{-1}(3x)}$ の微分を求める問題です。

微分合成関数対数微分法逆三角関数
2025/7/16

関数 $y = (x^2 + 1)^{x+1}$ の導関数を求める問題です。

導関数対数微分法積の微分合成関数の微分微分
2025/7/16

与えられた関数 $y=e^{\sqrt{x}}$ の微分 $dy/dx$ を求める問題です。

微分合成関数の微分指数関数連鎖律
2025/7/16

画像に写っている関数 $y = 2^{x^2}$ の導関数を求める問題です。

微分合成関数指数関数
2025/7/16

与えられた関数 $y = x^{\frac{1}{x}}$ の微分 $\frac{dy}{dx}$ を求める問題です。

微分対数微分関数の微分
2025/7/16

与えられた関数 $y = x^{\cos^{-1}(3x)}$ の導関数 $\frac{dy}{dx}$ を求める問題です。

微分導関数対数微分法合成関数の微分逆三角関数
2025/7/16

数列 $\frac{1}{2}, \frac{1}{2^2}, \frac{3}{2^2}, \frac{1}{2^3}, \frac{3}{2^3}, \frac{5}{2^3}, \frac{7}...

数列等比数列無限数列級数
2025/7/16

与えられた関数を微分する問題です。具体的には、以下の4つの関数 $y$ を $x$ で微分します。 (1) $y = -\frac{3}{2x^2}$ (2) $y = \frac{1}{x} - \...

微分関数の微分
2025/7/16

$\Omega = \{(x_1, x_2) : x_1 > -1, x_2 \in \mathbb{R} \} \subset \mathbb{R}^2$ とし、 関数 $f(x_1, x_2) =...

多変数関数偏微分臨界点ヘッセ行列局所最大・最小
2025/7/16