$\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \cos{t} \cos{3t} \, dt$ を計算します。解析学積分三角関数定積分2025/6/11. 問題の内容∫π65π6costcos3t dt\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \cos{t} \cos{3t} \, dt∫6π65πcostcos3tdt を計算します。2. 解き方の手順まず、積を和に変換する公式を利用します。cosAcosB=12[cos(A−B)+cos(A+B)]\cos{A}\cos{B} = \frac{1}{2}[\cos{(A-B)} + \cos{(A+B)}]cosAcosB=21[cos(A−B)+cos(A+B)]この公式を適用すると、costcos3t=12[cos(t−3t)+cos(t+3t)]=12[cos(−2t)+cos(4t)]=12[cos2t+cos4t]\cos{t}\cos{3t} = \frac{1}{2}[\cos{(t-3t)} + \cos{(t+3t)}] = \frac{1}{2}[\cos{(-2t)} + \cos{(4t)}] = \frac{1}{2}[\cos{2t} + \cos{4t}]costcos3t=21[cos(t−3t)+cos(t+3t)]=21[cos(−2t)+cos(4t)]=21[cos2t+cos4t]したがって、∫π65π6costcos3t dt=∫π65π612[cos2t+cos4t] dt\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \cos{t} \cos{3t} \, dt = \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \frac{1}{2}[\cos{2t} + \cos{4t}] \, dt∫6π65πcostcos3tdt=∫6π65π21[cos2t+cos4t]dt=12∫π65π6(cos2t+cos4t) dt= \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (\cos{2t} + \cos{4t}) \, dt=21∫6π65π(cos2t+cos4t)dt=12[12sin2t+14sin4t]π65π6= \frac{1}{2} [\frac{1}{2}\sin{2t} + \frac{1}{4}\sin{4t}]_{\frac{\pi}{6}}^{\frac{5\pi}{6}}=21[21sin2t+41sin4t]6π65π=12[12sin(5π3)+14sin(10π3)−(12sin(π3)+14sin(2π3))]= \frac{1}{2} [\frac{1}{2}\sin{(\frac{5\pi}{3})} + \frac{1}{4}\sin{(\frac{10\pi}{3})} - (\frac{1}{2}\sin{(\frac{\pi}{3})} + \frac{1}{4}\sin{(\frac{2\pi}{3})})]=21[21sin(35π)+41sin(310π)−(21sin(3π)+41sin(32π))]=12[12(−32)+14(32)−(12(32)+14(32))]= \frac{1}{2} [\frac{1}{2}(-\frac{\sqrt{3}}{2}) + \frac{1}{4}(\frac{\sqrt{3}}{2}) - (\frac{1}{2}(\frac{\sqrt{3}}{2}) + \frac{1}{4}(\frac{\sqrt{3}}{2}))]=21[21(−23)+41(23)−(21(23)+41(23))]=12[−34+38−34−38]= \frac{1}{2} [-\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{8}]=21[−43+83−43−83]=12[−32]= \frac{1}{2} [-\frac{\sqrt{3}}{2}]=21[−23]=−34= -\frac{\sqrt{3}}{4}=−433. 最終的な答え−34-\frac{\sqrt{3}}{4}−43