$x = \sqrt{5} + 2$ と $y = \sqrt{5} - 2$ が与えられたとき、次の式の値を求める問題です。 (1) $x^2 + y^2$ (2) $x^3 + y^3$ (3) $x^5 + y^5$

代数学式の計算平方根展開因数分解
2025/6/1

1. 問題の内容

x=5+2x = \sqrt{5} + 2y=52y = \sqrt{5} - 2 が与えられたとき、次の式の値を求める問題です。
(1) x2+y2x^2 + y^2
(2) x3+y3x^3 + y^3
(3) x5+y5x^5 + y^5

2. 解き方の手順

まず、x+yx+yxyxy の値を計算します。
x+y=(5+2)+(52)=25x+y = (\sqrt{5} + 2) + (\sqrt{5} - 2) = 2\sqrt{5}
xy=(5+2)(52)=(5)222=54=1xy = (\sqrt{5} + 2)(\sqrt{5} - 2) = (\sqrt{5})^2 - 2^2 = 5 - 4 = 1
(1) x2+y2x^2 + y^2 の計算
x2+y2=(x+y)22xyx^2 + y^2 = (x+y)^2 - 2xy
x2+y2=(25)22(1)=4×52=202=18x^2 + y^2 = (2\sqrt{5})^2 - 2(1) = 4 \times 5 - 2 = 20 - 2 = 18
(2) x3+y3x^3 + y^3 の計算
x3+y3=(x+y)(x2xy+y2)x^3 + y^3 = (x+y)(x^2 - xy + y^2)
x3+y3=(x+y)((x+y)23xy)x^3 + y^3 = (x+y)((x+y)^2 - 3xy)
x3+y3=(25)((25)23(1))=(25)(203)=(25)(17)=345x^3 + y^3 = (2\sqrt{5})((2\sqrt{5})^2 - 3(1)) = (2\sqrt{5})(20 - 3) = (2\sqrt{5})(17) = 34\sqrt{5}
(3) x5+y5x^5 + y^5 の計算
x5+y5=(x2+y2)(x3+y3)x2y2(x+y)x^5 + y^5 = (x^2+y^2)(x^3+y^3) - x^2y^2(x+y)
x5+y5=(18)(345)(1)2(25)x^5 + y^5 = (18)(34\sqrt{5}) - (1)^2(2\sqrt{5})
x5+y5=612525=6105x^5 + y^5 = 612\sqrt{5} - 2\sqrt{5} = 610\sqrt{5}

3. 最終的な答え

(1) x2+y2=18x^2 + y^2 = 18
(2) x3+y3=345x^3 + y^3 = 34\sqrt{5}
(3) x5+y5=6105x^5 + y^5 = 610\sqrt{5}