与えられた6つの関数をそれぞれ微分する問題です。解析学微分関数の微分多項式べき関数積の微分商の微分指数関数2025/6/11. 問題の内容与えられた6つの関数をそれぞれ微分する問題です。2. 解き方の手順各関数の微分を個別に計算します。(1) f(x)=−5x5+4x4−3x3+2x2−xf(x) = -5x^5 + 4x^4 - 3x^3 + 2x^2 - xf(x)=−5x5+4x4−3x3+2x2−x多項式の微分は、各項を個別に微分し、それらを足し合わせます。f′(x)=−5(5x4)+4(4x3)−3(3x2)+2(2x)−1f'(x) = -5(5x^4) + 4(4x^3) - 3(3x^2) + 2(2x) - 1f′(x)=−5(5x4)+4(4x3)−3(3x2)+2(2x)−1f′(x)=−25x4+16x3−9x2+4x−1f'(x) = -25x^4 + 16x^3 - 9x^2 + 4x - 1f′(x)=−25x4+16x3−9x2+4x−1(2) f(x)=1x10=x−10f(x) = \frac{1}{x^{10}} = x^{-10}f(x)=x101=x−10べき関数の微分公式を使います。f′(x)=−10x−11=−10x11f'(x) = -10x^{-11} = -\frac{10}{x^{11}}f′(x)=−10x−11=−x1110(3) f(x)=x3−2x2+3x−4x=x2−2x+3−4x=x2−2x+3−4x−1f(x) = \frac{x^3 - 2x^2 + 3x - 4}{x} = x^2 - 2x + 3 - \frac{4}{x} = x^2 - 2x + 3 - 4x^{-1}f(x)=xx3−2x2+3x−4=x2−2x+3−x4=x2−2x+3−4x−1各項を個別に微分します。f′(x)=2x−2+0−4(−1)x−2f'(x) = 2x - 2 + 0 - 4(-1)x^{-2}f′(x)=2x−2+0−4(−1)x−2f′(x)=2x−2+4x2f'(x) = 2x - 2 + \frac{4}{x^2}f′(x)=2x−2+x24(4) f(x)=(x2−3x+4)(x2−3x−1)f(x) = (x^2 - 3x + 4)(x^2 - 3x - 1)f(x)=(x2−3x+4)(x2−3x−1)積の微分公式を使います:(uv)′=u′v+uv′(uv)' = u'v + uv'(uv)′=u′v+uv′u=x2−3x+4u = x^2 - 3x + 4u=x2−3x+4, u′=2x−3u' = 2x - 3u′=2x−3v=x2−3x−1v = x^2 - 3x - 1v=x2−3x−1, v′=2x−3v' = 2x - 3v′=2x−3f′(x)=(2x−3)(x2−3x−1)+(x2−3x+4)(2x−3)f'(x) = (2x - 3)(x^2 - 3x - 1) + (x^2 - 3x + 4)(2x - 3)f′(x)=(2x−3)(x2−3x−1)+(x2−3x+4)(2x−3)f′(x)=(2x−3)(x2−3x−1+x2−3x+4)f'(x) = (2x - 3)(x^2 - 3x - 1 + x^2 - 3x + 4)f′(x)=(2x−3)(x2−3x−1+x2−3x+4)f′(x)=(2x−3)(2x2−6x+3)f'(x) = (2x - 3)(2x^2 - 6x + 3)f′(x)=(2x−3)(2x2−6x+3)f′(x)=4x3−12x2+6x−6x2+18x−9f'(x) = 4x^3 - 12x^2 + 6x - 6x^2 + 18x - 9f′(x)=4x3−12x2+6x−6x2+18x−9f′(x)=4x3−18x2+24x−9f'(x) = 4x^3 - 18x^2 + 24x - 9f′(x)=4x3−18x2+24x−9(5) f(x)=x2−3x+4x2−3x−1f(x) = \frac{x^2 - 3x + 4}{x^2 - 3x - 1}f(x)=x2−3x−1x2−3x+4商の微分公式を使います:(uv)′=u′v−uv′v2(\frac{u}{v})' = \frac{u'v - uv'}{v^2}(vu)′=v2u′v−uv′u=x2−3x+4u = x^2 - 3x + 4u=x2−3x+4, u′=2x−3u' = 2x - 3u′=2x−3v=x2−3x−1v = x^2 - 3x - 1v=x2−3x−1, v′=2x−3v' = 2x - 3v′=2x−3f′(x)=(2x−3)(x2−3x−1)−(x2−3x+4)(2x−3)(x2−3x−1)2f'(x) = \frac{(2x - 3)(x^2 - 3x - 1) - (x^2 - 3x + 4)(2x - 3)}{(x^2 - 3x - 1)^2}f′(x)=(x2−3x−1)2(2x−3)(x2−3x−1)−(x2−3x+4)(2x−3)f′(x)=(2x−3)(x2−3x−1−x2+3x−4)(x2−3x−1)2f'(x) = \frac{(2x - 3)(x^2 - 3x - 1 - x^2 + 3x - 4)}{(x^2 - 3x - 1)^2}f′(x)=(x2−3x−1)2(2x−3)(x2−3x−1−x2+3x−4)f′(x)=(2x−3)(−5)(x2−3x−1)2f'(x) = \frac{(2x - 3)(-5)}{(x^2 - 3x - 1)^2}f′(x)=(x2−3x−1)2(2x−3)(−5)f′(x)=−10x+15(x2−3x−1)2f'(x) = \frac{-10x + 15}{(x^2 - 3x - 1)^2}f′(x)=(x2−3x−1)2−10x+15(6) f(x)=(x2+2x+2)exf(x) = (x^2 + 2x + 2)e^xf(x)=(x2+2x+2)ex積の微分公式を使います:(uv)′=u′v+uv′(uv)' = u'v + uv'(uv)′=u′v+uv′u=x2+2x+2u = x^2 + 2x + 2u=x2+2x+2, u′=2x+2u' = 2x + 2u′=2x+2v=exv = e^xv=ex, v′=exv' = e^xv′=exf′(x)=(2x+2)ex+(x2+2x+2)exf'(x) = (2x + 2)e^x + (x^2 + 2x + 2)e^xf′(x)=(2x+2)ex+(x2+2x+2)exf′(x)=(2x+2+x2+2x+2)exf'(x) = (2x + 2 + x^2 + 2x + 2)e^xf′(x)=(2x+2+x2+2x+2)exf′(x)=(x2+4x+4)exf'(x) = (x^2 + 4x + 4)e^xf′(x)=(x2+4x+4)exf′(x)=(x+2)2exf'(x) = (x + 2)^2e^xf′(x)=(x+2)2ex3. 最終的な答え(1) −25x4+16x3−9x2+4x−1-25x^4 + 16x^3 - 9x^2 + 4x - 1−25x4+16x3−9x2+4x−1(2) −10x11-\frac{10}{x^{11}}−x1110(3) 2x−2+4x22x - 2 + \frac{4}{x^2}2x−2+x24(4) 4x3−18x2+24x−94x^3 - 18x^2 + 24x - 94x3−18x2+24x−9(5) −10x+15(x2−3x−1)2\frac{-10x + 15}{(x^2 - 3x - 1)^2}(x2−3x−1)2−10x+15(6) (x+2)2ex(x + 2)^2e^x(x+2)2ex