与えられた6つの極限値を求める問題です。 (1) $\lim_{x \to +0} xe^{\frac{1}{x}}$ (2) $\lim_{x \to \infty} (x^2 - \sqrt{x^4 + 3x^2})$ (3) $\lim_{x \to \infty} (1+x^2)^{\frac{1}{\log x}}$ (4) $\lim_{x \to \infty} (1+e^x)^{\frac{1}{x}}$ (5) $\lim_{x \to \infty} x(\frac{\pi}{2} - \arctan x)$ (6) $\lim_{x \to \infty} (\frac{2}{\pi} - \arctan x)^x$

解析学極限関数の極限指数関数対数関数arctanテイラー展開
2025/6/2

1. 問題の内容

与えられた6つの極限値を求める問題です。
(1) limx+0xe1x\lim_{x \to +0} xe^{\frac{1}{x}}
(2) limx(x2x4+3x2)\lim_{x \to \infty} (x^2 - \sqrt{x^4 + 3x^2})
(3) limx(1+x2)1logx\lim_{x \to \infty} (1+x^2)^{\frac{1}{\log x}}
(4) limx(1+ex)1x\lim_{x \to \infty} (1+e^x)^{\frac{1}{x}}
(5) limxx(π2arctanx)\lim_{x \to \infty} x(\frac{\pi}{2} - \arctan x)
(6) limx(2πarctanx)x\lim_{x \to \infty} (\frac{2}{\pi} - \arctan x)^x

2. 解き方の手順

(1) limx+0xe1x\lim_{x \to +0} xe^{\frac{1}{x}}
t=1xt = \frac{1}{x} とおくと、x+0x \to +0 のとき t+t \to +\infty なので、
limx+0xe1x=limt+ett=+\lim_{x \to +0} xe^{\frac{1}{x}} = \lim_{t \to +\infty} \frac{e^t}{t} = +\infty
(2) limx(x2x4+3x2)\lim_{x \to \infty} (x^2 - \sqrt{x^4 + 3x^2})
limx(x2x4+3x2)=limx(x2x4+3x2)(x2+x4+3x2)x2+x4+3x2\lim_{x \to \infty} (x^2 - \sqrt{x^4 + 3x^2}) = \lim_{x \to \infty} \frac{(x^2 - \sqrt{x^4 + 3x^2})(x^2 + \sqrt{x^4 + 3x^2})}{x^2 + \sqrt{x^4 + 3x^2}}
=limxx4(x4+3x2)x2+x4+3x2=limx3x2x2+x4+3x2=limx3x2x2+x21+3x2=limx31+1+3x2=31+1=32= \lim_{x \to \infty} \frac{x^4 - (x^4 + 3x^2)}{x^2 + \sqrt{x^4 + 3x^2}} = \lim_{x \to \infty} \frac{-3x^2}{x^2 + \sqrt{x^4 + 3x^2}} = \lim_{x \to \infty} \frac{-3x^2}{x^2 + x^2\sqrt{1 + \frac{3}{x^2}}} = \lim_{x \to \infty} \frac{-3}{1 + \sqrt{1 + \frac{3}{x^2}}} = \frac{-3}{1 + 1} = -\frac{3}{2}
(3) limx(1+x2)1logx\lim_{x \to \infty} (1+x^2)^{\frac{1}{\log x}}
y=(1+x2)1logxy = (1+x^2)^{\frac{1}{\log x}} とおくと、logy=1logxlog(1+x2)\log y = \frac{1}{\log x} \log (1+x^2)
limxlogy=limxlog(1+x2)logx=limx2x1+x21x=limx2x21+x2=2\lim_{x \to \infty} \log y = \lim_{x \to \infty} \frac{\log (1+x^2)}{\log x} = \lim_{x \to \infty} \frac{\frac{2x}{1+x^2}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{2x^2}{1+x^2} = 2
したがって、limxy=e2\lim_{x \to \infty} y = e^2
(4) limx(1+ex)1x\lim_{x \to \infty} (1+e^x)^{\frac{1}{x}}
limx(1+ex)1x=limx(ex(ex+1))1x=limxe(1+ex)1x=e1=e\lim_{x \to \infty} (1+e^x)^{\frac{1}{x}} = \lim_{x \to \infty} (e^x(e^{-x}+1))^{\frac{1}{x}} = \lim_{x \to \infty} e (1+e^{-x})^{\frac{1}{x}} = e \cdot 1 = e
(5) limxx(π2arctanx)\lim_{x \to \infty} x(\frac{\pi}{2} - \arctan x)
t=arctanxt = \arctan x とおくと、xx \to \infty のとき tπ2t \to \frac{\pi}{2} であり、x=tantx = \tan t。したがって、
limxx(π2arctanx)=limtπ2tant(π2t)=limtπ2sintcost(π2t)\lim_{x \to \infty} x(\frac{\pi}{2} - \arctan x) = \lim_{t \to \frac{\pi}{2}} \tan t (\frac{\pi}{2} - t) = \lim_{t \to \frac{\pi}{2}} \frac{\sin t}{\cos t}(\frac{\pi}{2} - t)
u=π2tu = \frac{\pi}{2} - t とおくと、tπ2t \to \frac{\pi}{2} のとき u0u \to 0 であり、
limu0sin(π2u)cos(π2u)u=limu0cosusinuu=limu0cosuusinu=11=1\lim_{u \to 0} \frac{\sin (\frac{\pi}{2} - u)}{\cos(\frac{\pi}{2} - u)} u = \lim_{u \to 0} \frac{\cos u}{\sin u} u = \lim_{u \to 0} \cos u \cdot \frac{u}{\sin u} = 1 \cdot 1 = 1
(6) limx(2πarctanx)x\lim_{x \to \infty} (\frac{2}{\pi} - \arctan x)^x
limx(2πarctanxx)x=limx(2πarctanxπ)x\lim_{x \to \infty} (\frac{2}{\pi} - \frac{\arctan x}{x})^x = \lim_{x \to \infty} (\frac{2 - \pi \arctan x}{\pi})^x
arctanx=π21x+O(1x3)\arctan x = \frac{\pi}{2} - \frac{1}{x} + O(\frac{1}{x^3}) なので、
limx(2πarctanx)x=limx(2π(π21x))x=limx(π2+1x+2π)x\lim_{x \to \infty} (\frac{2}{\pi} - \arctan x)^x = \lim_{x \to \infty} (\frac{2}{\pi} - (\frac{\pi}{2} - \frac{1}{x}))^x = \lim_{x \to \infty} (-\frac{\pi}{2} + \frac{1}{x} + \frac{2}{\pi})^x

3. 最終的な答え

(1) \infty
(2) 32-\frac{3}{2}
(3) e2e^2
(4) ee
(5) 11
(6) 0