$n \ge 2$ のとき、数列の和 $S = 1 \cdot 1 + 3 \cdot 2 + 5 \cdot 2^2 + \dots + (2n-1) \cdot 2^{n-1}$ を求める。代数学数列級数等比数列シグマ2025/6/21. 問題の内容n≥2n \ge 2n≥2 のとき、数列の和 S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−1S = 1 \cdot 1 + 3 \cdot 2 + 5 \cdot 2^2 + \dots + (2n-1) \cdot 2^{n-1}S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−1 を求める。2. 解き方の手順S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−1S = 1 \cdot 1 + 3 \cdot 2 + 5 \cdot 2^2 + \dots + (2n-1) \cdot 2^{n-1}S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−1 とする。この式に2をかけると、2S=1⋅2+3⋅22+5⋅23+⋯+(2n−3)⋅2n−1+(2n−1)⋅2n2S = 1 \cdot 2 + 3 \cdot 2^2 + 5 \cdot 2^3 + \dots + (2n-3) \cdot 2^{n-1} + (2n-1) \cdot 2^n2S=1⋅2+3⋅22+5⋅23+⋯+(2n−3)⋅2n−1+(2n−1)⋅2n となる。S−2SS - 2SS−2S を計算すると、−S=1⋅1+(3−1)⋅2+(5−3)⋅22+⋯+(2n−1−(2n−3))⋅2n−1−(2n−1)⋅2n-S = 1 \cdot 1 + (3-1) \cdot 2 + (5-3) \cdot 2^2 + \dots + (2n-1 - (2n-3)) \cdot 2^{n-1} - (2n-1) \cdot 2^n−S=1⋅1+(3−1)⋅2+(5−3)⋅22+⋯+(2n−1−(2n−3))⋅2n−1−(2n−1)⋅2n−S=1+2⋅2+2⋅22+⋯+2⋅2n−1−(2n−1)⋅2n-S = 1 + 2 \cdot 2 + 2 \cdot 2^2 + \dots + 2 \cdot 2^{n-1} - (2n-1) \cdot 2^n−S=1+2⋅2+2⋅22+⋯+2⋅2n−1−(2n−1)⋅2n−S=1+2(2+22+⋯+2n−1)−(2n−1)⋅2n-S = 1 + 2(2 + 2^2 + \dots + 2^{n-1}) - (2n-1) \cdot 2^n−S=1+2(2+22+⋯+2n−1)−(2n−1)⋅2n括弧の中は等比数列の和なので、2+22+⋯+2n−1=2(2n−2−1)2−1=2n−22 + 2^2 + \dots + 2^{n-1} = \frac{2(2^{n-2} - 1)}{2-1} = 2^n - 22+22+⋯+2n−1=2−12(2n−2−1)=2n−2したがって、−S=1+2(2n−2)−(2n−1)⋅2n-S = 1 + 2(2^n - 2) - (2n-1) \cdot 2^n−S=1+2(2n−2)−(2n−1)⋅2n−S=1+2n+1−4−(2n−1)⋅2n-S = 1 + 2^{n+1} - 4 - (2n-1) \cdot 2^n−S=1+2n+1−4−(2n−1)⋅2n−S=−3+2n+1−(2n−1)⋅2n-S = -3 + 2^{n+1} - (2n-1) \cdot 2^n−S=−3+2n+1−(2n−1)⋅2n−S=−3+2⋅2n−(2n−1)⋅2n-S = -3 + 2 \cdot 2^n - (2n-1) \cdot 2^n−S=−3+2⋅2n−(2n−1)⋅2n−S=−3+(2−(2n−1))⋅2n-S = -3 + (2 - (2n-1)) \cdot 2^n−S=−3+(2−(2n−1))⋅2n−S=−3+(3−2n)⋅2n-S = -3 + (3 - 2n) \cdot 2^n−S=−3+(3−2n)⋅2nS=3+(2n−3)⋅2nS = 3 + (2n - 3) \cdot 2^nS=3+(2n−3)⋅2n3. 最終的な答えS=(2n−3)2n+3S = (2n - 3)2^n + 3S=(2n−3)2n+3