$\sin \alpha - \sin \beta = -\frac{\sqrt{2}}{2}$、$\cos \alpha + \cos \beta = \frac{\sqrt{6}}{2}$のとき、$\cos(\alpha + \beta)$の値を求める。解析学三角関数加法定理三角関数の合成2025/6/21. 問題の内容sinα−sinβ=−22\sin \alpha - \sin \beta = -\frac{\sqrt{2}}{2}sinα−sinβ=−22、cosα+cosβ=62\cos \alpha + \cos \beta = \frac{\sqrt{6}}{2}cosα+cosβ=26のとき、cos(α+β)\cos(\alpha + \beta)cos(α+β)の値を求める。2. 解き方の手順与えられた2つの式をそれぞれ2乗する。(sinα−sinβ)2=sin2α−2sinαsinβ+sin2β=(−22)2=12(\sin \alpha - \sin \beta)^2 = \sin^2 \alpha - 2\sin \alpha \sin \beta + \sin^2 \beta = \left(-\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}(sinα−sinβ)2=sin2α−2sinαsinβ+sin2β=(−22)2=21(cosα+cosβ)2=cos2α+2cosαcosβ+cos2β=(62)2=64=32(\cos \alpha + \cos \beta)^2 = \cos^2 \alpha + 2\cos \alpha \cos \beta + \cos^2 \beta = \left(\frac{\sqrt{6}}{2}\right)^2 = \frac{6}{4} = \frac{3}{2}(cosα+cosβ)2=cos2α+2cosαcosβ+cos2β=(26)2=46=232つの式を足し合わせる。sin2α+cos2α+sin2β+cos2β−2sinαsinβ+2cosαcosβ=12+32\sin^2 \alpha + \cos^2 \alpha + \sin^2 \beta + \cos^2 \beta - 2\sin \alpha \sin \beta + 2\cos \alpha \cos \beta = \frac{1}{2} + \frac{3}{2}sin2α+cos2α+sin2β+cos2β−2sinαsinβ+2cosαcosβ=21+231+1+2(cosαcosβ−sinαsinβ)=21 + 1 + 2(\cos \alpha \cos \beta - \sin \alpha \sin \beta) = 21+1+2(cosαcosβ−sinαsinβ)=22+2cos(α+β)=22 + 2\cos(\alpha + \beta) = 22+2cos(α+β)=22cos(α+β)=02\cos(\alpha + \beta) = 02cos(α+β)=0cos(α+β)=0\cos(\alpha + \beta) = 0cos(α+β)=03. 最終的な答えcos(α+β)=0\cos(\alpha + \beta) = 0cos(α+β)=0