与えられた4つの微分方程式の一般解を特性方程式を立てて求める問題です。 (1) $y' = ky$ ($k$は定数) (2) $ay' = 0$ ($a$は定数) (3) $y'' + 4y' + 3y = 0$ (4) $y'' - 2y' + y = 0$
2025/6/2
1. 問題の内容
与えられた4つの微分方程式の一般解を特性方程式を立てて求める問題です。
(1) (は定数)
(2) (は定数)
(3)
(4)
2. 解き方の手順
(1) の場合
特性方程式は となります。
したがって、一般解は です。(は任意の定数)
(2) の場合
となり、特性方程式は です。
したがって、一般解は です。(は任意の定数)
(3) の場合
特性方程式は です。
より、 となります。
したがって、一般解は です。(は任意の定数)
(4) の場合
特性方程式は です。
より、 (重根) となります。
したがって、一般解は です。(は任意の定数)
3. 最終的な答え
(1) (は任意の定数)
(2) (は任意の定数)
(3) (は任意の定数)
(4) (は任意の定数)