次の方程式を解いて、$x$ の値を求めます。 $\frac{1}{x-1} - \frac{1}{x-3} = 2$代数学分数方程式方程式代数2025/6/21. 問題の内容次の方程式を解いて、xxx の値を求めます。1x−1−1x−3=2\frac{1}{x-1} - \frac{1}{x-3} = 2x−11−x−31=22. 解き方の手順まず、左辺を通分します。1x−1−1x−3=(x−3)−(x−1)(x−1)(x−3)\frac{1}{x-1} - \frac{1}{x-3} = \frac{(x-3) - (x-1)}{(x-1)(x-3)}x−11−x−31=(x−1)(x−3)(x−3)−(x−1)(x−3)−(x−1)(x−1)(x−3)=x−3−x+1(x−1)(x−3)=−2(x−1)(x−3)\frac{(x-3) - (x-1)}{(x-1)(x-3)} = \frac{x-3-x+1}{(x-1)(x-3)} = \frac{-2}{(x-1)(x-3)}(x−1)(x−3)(x−3)−(x−1)=(x−1)(x−3)x−3−x+1=(x−1)(x−3)−2したがって、方程式は次のようになります。−2(x−1)(x−3)=2\frac{-2}{(x-1)(x-3)} = 2(x−1)(x−3)−2=2両辺に (x−1)(x−3)(x-1)(x-3)(x−1)(x−3) を掛けると、−2=2(x−1)(x−3)-2 = 2(x-1)(x-3)−2=2(x−1)(x−3)両辺を2で割ると、−1=(x−1)(x−3)-1 = (x-1)(x-3)−1=(x−1)(x−3)展開すると、−1=x2−3x−x+3-1 = x^2 - 3x - x + 3−1=x2−3x−x+3−1=x2−4x+3-1 = x^2 - 4x + 3−1=x2−4x+3移項すると、x2−4x+4=0x^2 - 4x + 4 = 0x2−4x+4=0因数分解すると、(x−2)2=0(x-2)^2 = 0(x−2)2=0したがって、x−2=0x-2 = 0x−2=0 となり、x=2x=2x=2。3. 最終的な答えx=2x = 2x=2