はい、承知しました。画像にある数学の問題を解きます。代数学式の計算平方根因数分解式の展開有理化2025/6/2はい、承知しました。画像にある数学の問題を解きます。**1. 問題の内容**x=7+52x = \frac{\sqrt{7}+\sqrt{5}}{2}x=27+5, y=7−52y = \frac{\sqrt{7}-\sqrt{5}}{2}y=27−5 のとき、次の値を求めよ。(1) x+yx+yx+y(2) xyxyxy(3) x2+y2x^2+y^2x2+y2(4) x3y+xy3x^3y+xy^3x3y+xy3(5) (x+y)(x2−xy+y2)(x+y)(x^2-xy+y^2)(x+y)(x2−xy+y2) を展開せよ(6) x3+y3x^3+y^3x3+y3(7) x4+y4x^4+y^4x4+y4(8) 4x2y−4x2z+y2z−y34x^2y - 4x^2z + y^2z - y^34x2y−4x2z+y2z−y3 を因数分解せよ。**2. 解き方の手順**(1) x+yx+yx+yx+y=7+52+7−52=272=7x+y = \frac{\sqrt{7}+\sqrt{5}}{2} + \frac{\sqrt{7}-\sqrt{5}}{2} = \frac{2\sqrt{7}}{2} = \sqrt{7}x+y=27+5+27−5=227=7(2) xyxyxyxy=7+52×7−52=(7)2−(5)24=7−54=24=12xy = \frac{\sqrt{7}+\sqrt{5}}{2} \times \frac{\sqrt{7}-\sqrt{5}}{2} = \frac{(\sqrt{7})^2 - (\sqrt{5})^2}{4} = \frac{7-5}{4} = \frac{2}{4} = \frac{1}{2}xy=27+5×27−5=4(7)2−(5)2=47−5=42=21(3) x2+y2x^2+y^2x2+y2x2+y2=(x+y)2−2xy=(7)2−2×12=7−1=6x^2+y^2 = (x+y)^2 - 2xy = (\sqrt{7})^2 - 2 \times \frac{1}{2} = 7 - 1 = 6x2+y2=(x+y)2−2xy=(7)2−2×21=7−1=6(4) x3y+xy3x^3y+xy^3x3y+xy3x3y+xy3=xy(x2+y2)=12×6=3x^3y+xy^3 = xy(x^2+y^2) = \frac{1}{2} \times 6 = 3x3y+xy3=xy(x2+y2)=21×6=3(5) (x+y)(x2−xy+y2)(x+y)(x^2-xy+y^2)(x+y)(x2−xy+y2) の展開(x+y)(x2−xy+y2)=x3+y3(x+y)(x^2-xy+y^2) = x^3 + y^3(x+y)(x2−xy+y2)=x3+y3(6) x3+y3x^3+y^3x3+y3x3+y3=(x+y)3−3xy(x+y)=(7)3−3×12×7=77−327=147−372=1172x^3+y^3 = (x+y)^3 - 3xy(x+y) = (\sqrt{7})^3 - 3 \times \frac{1}{2} \times \sqrt{7} = 7\sqrt{7} - \frac{3}{2}\sqrt{7} = \frac{14\sqrt{7}-3\sqrt{7}}{2} = \frac{11\sqrt{7}}{2}x3+y3=(x+y)3−3xy(x+y)=(7)3−3×21×7=77−237=2147−37=2117(7) x4+y4x^4+y^4x4+y4x4+y4=(x2+y2)2−2x2y2=62−2×(12)2=36−2×14=36−12=72−12=712x^4+y^4 = (x^2+y^2)^2 - 2x^2y^2 = 6^2 - 2 \times (\frac{1}{2})^2 = 36 - 2 \times \frac{1}{4} = 36 - \frac{1}{2} = \frac{72-1}{2} = \frac{71}{2}x4+y4=(x2+y2)2−2x2y2=62−2×(21)2=36−2×41=36−21=272−1=271(8) 4x2y−4x2z+y2z−y34x^2y - 4x^2z + y^2z - y^34x2y−4x2z+y2z−y34x2y−4x2z+y2z−y3=4x2(y−z)−y2(y−z)=(4x2−y2)(y−z)=(2x+y)(2x−y)(y−z)4x^2y - 4x^2z + y^2z - y^3 = 4x^2(y-z) - y^2(y-z) = (4x^2 - y^2)(y-z) = (2x+y)(2x-y)(y-z)4x2y−4x2z+y2z−y3=4x2(y−z)−y2(y−z)=(4x2−y2)(y−z)=(2x+y)(2x−y)(y−z)**3. 最終的な答え**(1) 7\sqrt{7}7(2) 12\frac{1}{2}21(3) 666(4) 333(5) x3+y3x^3+y^3x3+y3(6) 1172\frac{11\sqrt{7}}{2}2117(7) 712\frac{71}{2}271(8) (2x+y)(2x−y)(y−z)(2x+y)(2x-y)(y-z)(2x+y)(2x−y)(y−z)