命題「$x$が素数 $\Rightarrow$ $x$は奇数」の逆、裏、対偶をそれぞれ選択肢の中から選ぶ問題です。

数論命題論理素数対偶
2025/6/2

1. 問題の内容

命題「xxが素数 \Rightarrow xxは奇数」の逆、裏、対偶をそれぞれ選択肢の中から選ぶ問題です。

2. 解き方の手順

まず、与えられた命題を pqp \Rightarrow q と表現します。ここで、pp は「xx が素数」、 qq は「xx が奇数」を表します。
- 逆: qpq \Rightarrow p (「xxが奇数 \Rightarrow xxは素数」)
選択肢イが該当します。
- 裏: pq\overline{p} \Rightarrow \overline{q} (「xxが素数ではない \Rightarrow xxは奇数ではない」)
選択肢アが該当します。
- 対偶: qp\overline{q} \Rightarrow \overline{p} (「xxが奇数ではない \Rightarrow xxは素数ではない」)
選択肢ウが該当します。

3. 最終的な答え

逆: イ
裏: ア
対偶: ウ

「数論」の関連問題

(1) ユークリッドの互除法を用いて、8177と3315の最大公約数を求める問題。 (2) $589/899$ を既約分数で表す問題。 (3) $17x + 5y = 1$ の整数解を全て求める問題。...

最大公約数ユークリッドの互除法既約分数不定方程式整数解
2025/7/9

問題は以下の通りです。 (1) $a, b$ は整数で、$a$ を7で割ると1余り、$b$ を7で割ると4余るとき、$a^2 + b^2$ を7で割った余りを求めよ。 (2) 1, 3, 5のように連...

合同算術剰余整数の性質倍数
2025/7/9

整数 $n$ に対して、「$n^2$ が奇数ならば、$n$ は奇数である」という命題を証明する。

命題証明対偶整数の性質偶数奇数
2025/7/8

$5m + 19$ と $4m + 18$ の最大公約数が $7$ となるような $100$ 以下の自然数 $m$ の個数を求める問題です。

最大公約数互除法整数の性質
2025/7/8

ルジャンドル記号 $\left( \frac{29}{131} \right)$ の値を、与えられた手順に従って計算し、空欄①から⑤に当てはまる数を求める問題です。

ルジャンドル記号平方剰余の相互法則合同算術
2025/7/8

実数 $a$ が与えられたとき、「任意の自然数 $n$ に対し、常に $\frac{m}{n} \le a$ を満たす自然数 $m$ が存在する」という命題が、$a \ge 1$ であるための何条件で...

命題自然数必要十分条件不等式床関数
2025/7/8

与えられた2つの命題の真偽を判定する問題です。 * 命題1: $n$ が3の倍数ならば、$n^2$ も3の倍数である。 * 命題2: 自然数 $n$ が素数ならば、$n+1$ は素数ではない。

命題真偽素数倍数整数の性質
2025/7/8

$\sqrt{53-2n}$ が整数となるような自然数 $n$ の個数を求める問題です。

平方根整数の性質平方数
2025/7/8

$n$ は自然数とする。$\sqrt{\frac{3024}{n}}$ が自然数となるような $n$ をすべて求めよ。

平方根約数素因数分解整数の性質
2025/7/8

7進法で表すと $abc_{(7)}$ となり、5進法で表すと $bca_{(5)}$ となる数を10進法で表す。

進法整数方程式数の表現
2025/7/8