与えられた12個の数式を展開し、計算結果を求める問題です。代数学式の展開多項式因数分解二次式2025/6/2はい、承知いたしました。画像にある12個の計算問題を解きます。1. 問題の内容与えられた12個の数式を展開し、計算結果を求める問題です。2. 解き方の手順(1) (a+b)(x−y)=ax−ay+bx−by(a+b)(x-y) = ax - ay + bx - by(a+b)(x−y)=ax−ay+bx−by(2) (x+2)(2x+3)=2x2+3x+4x+6=2x2+7x+6(x+2)(2x+3) = 2x^2 + 3x + 4x + 6 = 2x^2 + 7x + 6(x+2)(2x+3)=2x2+3x+4x+6=2x2+7x+6(3) (3x−7)(4x−5)=12x2−15x−28x+35=12x2−43x+35(3x-7)(4x-5) = 12x^2 - 15x - 28x + 35 = 12x^2 - 43x + 35(3x−7)(4x−5)=12x2−15x−28x+35=12x2−43x+35(4) (5x+7)2=(5x+7)(5x+7)=25x2+35x+35x+49=25x2+70x+49(5x+7)^2 = (5x+7)(5x+7) = 25x^2 + 35x + 35x + 49 = 25x^2 + 70x + 49(5x+7)2=(5x+7)(5x+7)=25x2+35x+35x+49=25x2+70x+49(5) (−y−14)2=(−y−14)(−y−14)=y2+14y+14y+116=y2+12y+116(-y - \frac{1}{4})^2 = (-y - \frac{1}{4})(-y - \frac{1}{4}) = y^2 + \frac{1}{4}y + \frac{1}{4}y + \frac{1}{16} = y^2 + \frac{1}{2}y + \frac{1}{16}(−y−41)2=(−y−41)(−y−41)=y2+41y+41y+161=y2+21y+161(6) (x+10)(x−10)=x2−10x+10x−100=x2−100(x+10)(x-10) = x^2 - 10x + 10x - 100 = x^2 - 100(x+10)(x−10)=x2−10x+10x−100=x2−100(7) (a+0.3)(0.3−a)=0.3a−a2+0.09−0.3a=−a2+0.09=0.09−a2(a+0.3)(0.3-a) = 0.3a - a^2 + 0.09 - 0.3a = -a^2 + 0.09 = 0.09-a^2(a+0.3)(0.3−a)=0.3a−a2+0.09−0.3a=−a2+0.09=0.09−a2(8) (x+2)(x+9)=x2+9x+2x+18=x2+11x+18(x+2)(x+9) = x^2 + 9x + 2x + 18 = x^2 + 11x + 18(x+2)(x+9)=x2+9x+2x+18=x2+11x+18(9) (y−13)(y+10)=y2+10y−13y−130=y2−3y−130(y-13)(y+10) = y^2 + 10y - 13y - 130 = y^2 - 3y - 130(y−13)(y+10)=y2+10y−13y−130=y2−3y−130(10) (a−2)(a−6)=a2−6a−2a+12=a2−8a+12(a-2)(a-6) = a^2 - 6a - 2a + 12 = a^2 - 8a + 12(a−2)(a−6)=a2−6a−2a+12=a2−8a+12(11) (a−1)(a−b+1)=a2−ab+a−a+b−1=a2−ab+b−1(a-1)(a-b+1) = a^2 - ab + a - a + b - 1 = a^2 - ab + b - 1(a−1)(a−b+1)=a2−ab+a−a+b−1=a2−ab+b−1(12) (x+y)(x+2y−3)=x2+2xy−3x+xy+2y2−3y=x2+3xy−3x+2y2−3y(x+y)(x+2y-3) = x^2 + 2xy - 3x + xy + 2y^2 - 3y = x^2 + 3xy - 3x + 2y^2 - 3y(x+y)(x+2y−3)=x2+2xy−3x+xy+2y2−3y=x2+3xy−3x+2y2−3y3. 最終的な答え(1) ax−ay+bx−byax - ay + bx - byax−ay+bx−by(2) 2x2+7x+62x^2 + 7x + 62x2+7x+6(3) 12x2−43x+3512x^2 - 43x + 3512x2−43x+35(4) 25x2+70x+4925x^2 + 70x + 4925x2+70x+49(5) y2+12y+116y^2 + \frac{1}{2}y + \frac{1}{16}y2+21y+161(6) x2−100x^2 - 100x2−100(7) 0.09−a20.09-a^20.09−a2(8) x2+11x+18x^2 + 11x + 18x2+11x+18(9) y2−3y−130y^2 - 3y - 130y2−3y−130(10) a2−8a+12a^2 - 8a + 12a2−8a+12(11) a2−ab+b−1a^2 - ab + b - 1a2−ab+b−1(12) x2+3xy−3x+2y2−3yx^2 + 3xy - 3x + 2y^2 - 3yx2+3xy−3x+2y2−3y