次の極限を計算します。 $\lim_{x \to 0} \left( \frac{1}{x-x^2} - \frac{1}{e^x - 1} \right)$解析学極限テイラー展開ロピタルの定理関数の極限2025/6/3はい、承知いたしました。1. 問題の内容次の極限を計算します。limx→0(1x−x2−1ex−1)\lim_{x \to 0} \left( \frac{1}{x-x^2} - \frac{1}{e^x - 1} \right)limx→0(x−x21−ex−11)2. 解き方の手順まず、与えられた式を通分します。limx→0(1x−x2−1ex−1)=limx→0ex−1−(x−x2)(x−x2)(ex−1)=limx→0ex−1−x+x2(x−x2)(ex−1)\lim_{x \to 0} \left( \frac{1}{x-x^2} - \frac{1}{e^x - 1} \right) = \lim_{x \to 0} \frac{e^x - 1 - (x - x^2)}{(x-x^2)(e^x - 1)} = \lim_{x \to 0} \frac{e^x - 1 - x + x^2}{(x-x^2)(e^x - 1)}limx→0(x−x21−ex−11)=limx→0(x−x2)(ex−1)ex−1−(x−x2)=limx→0(x−x2)(ex−1)ex−1−x+x2ここで、exe^xex のテイラー展開を考えます。ex=1+x+x22+x36+O(x4)e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4)ex=1+x+2x2+6x3+O(x4)これを代入すると、limx→0(1+x+x22+x36+O(x4))−1−x+x2(x−x2)((1+x+x22+x36+O(x4))−1)=limx→032x2+x36+O(x4)(x−x2)(x+x22+x36+O(x4))=limx→032x2+x36+O(x4)x2+x32+x46−x3−x42+O(x5)=limx→032x2+x36+O(x4)x2−x32−x43+O(x5)\lim_{x \to 0} \frac{(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4)) - 1 - x + x^2}{(x-x^2)((1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4)) - 1)} = \lim_{x \to 0} \frac{\frac{3}{2}x^2 + \frac{x^3}{6} + O(x^4)}{(x-x^2)(x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4))} = \lim_{x \to 0} \frac{\frac{3}{2}x^2 + \frac{x^3}{6} + O(x^4)}{x^2 + \frac{x^3}{2} + \frac{x^4}{6} - x^3 - \frac{x^4}{2} + O(x^5)} = \lim_{x \to 0} \frac{\frac{3}{2}x^2 + \frac{x^3}{6} + O(x^4)}{x^2 - \frac{x^3}{2} - \frac{x^4}{3} + O(x^5)}limx→0(x−x2)((1+x+2x2+6x3+O(x4))−1)(1+x+2x2+6x3+O(x4))−1−x+x2=limx→0(x−x2)(x+2x2+6x3+O(x4))23x2+6x3+O(x4)=limx→0x2+2x3+6x4−x3−2x4+O(x5)23x2+6x3+O(x4)=limx→0x2−2x3−3x4+O(x5)23x2+6x3+O(x4)分母分子を x2x^2x2 で割ると、limx→032+x6+O(x2)1−x2−x23+O(x3)=321=32\lim_{x \to 0} \frac{\frac{3}{2} + \frac{x}{6} + O(x^2)}{1 - \frac{x}{2} - \frac{x^2}{3} + O(x^3)} = \frac{\frac{3}{2}}{1} = \frac{3}{2}limx→01−2x−3x2+O(x3)23+6x+O(x2)=123=233. 最終的な答え32\frac{3}{2}23