直角三角形ABCにおいて、$AB = \sqrt{2}$, $BC = 1$, $AC = 1$のとき、$\cos C$の値を求める問題です。

幾何学三角比直角三角形ピタゴラスの定理cos
2025/3/27

1. 問題の内容

直角三角形ABCにおいて、AB=2AB = \sqrt{2}, BC=1BC = 1, AC=1AC = 1のとき、cosC\cos Cの値を求める問題です。

2. 解き方の手順

まず、どの角が直角であるかを確認します。三角形の辺の長さの関係を確認すると、AB2=(2)2=2AB^2 = (\sqrt{2})^2 = 2, BC2+AC2=12+12=2BC^2 + AC^2 = 1^2 + 1^2 = 2となります。
したがって、AB2=BC2+AC2AB^2 = BC^2 + AC^2が成り立つため、ピタゴラスの定理より、C=90\angle C = 90^\circであることがわかります。
cosC\cos Cを求めるには、cos90\cos 90^\circの値を求めればよいです。
cos90=0\cos 90^\circ = 0

3. 最終的な答え

cosC=0\cos C = 0

「幾何学」の関連問題

円の方程式 $x^2 + y^2 - 2x + 6y + n - 1 = 0$ が半径3の円を表すとき、定数 $n$ の値を求める問題です。

円の方程式半径標準形
2025/5/31

与えられた各図において、ベクトル$\vec{a}$と$\vec{b}$のなす角を求める。

ベクトル角度空間ベクトル
2025/5/31

点Aと点Bが与えられたとき、ベクトル$\overrightarrow{AB}$を成分で表す問題です。 (1) A(-1, 2), B(3, 3) (2) A(2, 5), B(-4, 0)

ベクトル座標成分表示
2025/5/31

与えられた図のベクトル $\vec{a}$, $\vec{b}$, $\vec{c}$, $\vec{d}$ を成分表示で表す問題です。

ベクトル成分表示座標平面
2025/5/31

与えられた図において、ベクトル$\vec{a}$と$\vec{b}$のなす角、ベクトル$\vec{b}$と$\vec{c}$のなす角、ベクトル$\vec{c}$と$\vec{a}$のなす角をそれぞれ求...

ベクトル角度三角形
2025/5/31

平行四辺形OACBにおいて、対角線の交点をMとし、ベクトルOA=a, ベクトルOB=bとするとき、次のベクトルをa, bを用いて表す。 (1) ベクトルOC (2) ベクトルOM

ベクトル平行四辺形ベクトルの加法ベクトルの分解
2025/5/31

与えられたベクトルの和や差を、一つのベクトルで表現する問題です。

ベクトルベクトルの加法ベクトルの減法結合法則
2025/5/31

問題は、与えられたベクトル$\vec{a}$, $\vec{b}$, $\vec{c}$について、ベクトル$\vec{a} - \vec{b} + \vec{c}$を図示することと、別の図で与えられた...

ベクトルベクトルの加減算ベクトルの図示
2025/5/31

この問題は、与えられたベクトル$\vec{a}$, $\vec{b}$, $\vec{c}$に対して、以下のベクトルを図示する問題です。 (1) $\vec{a} + \vec{b}$ と $\vec...

ベクトルベクトルの加減算ベクトルの図示
2025/5/31

問題1-1: (1) 図のベクトル①と等しいベクトルを答える。 (2) 図のベクトル②の逆ベクトルを答える。 問題1-2: 図の平行四辺形ABCDにおいて、次の選択肢の中から正しいものを選ぶ。 (a)...

ベクトル平行四辺形ベクトルの相等逆ベクトル
2025/5/31