初項が7、公比が2の等比数列 $\{a_n\}$ の一般項 $a_n$ を求める問題です。

代数学等比数列数列一般項
2025/3/27

1. 問題の内容

初項が7、公比が2の等比数列 {an}\{a_n\} の一般項 ana_n を求める問題です。

2. 解き方の手順

等比数列の一般項の公式を利用します。
等比数列の一般項の公式は、初項を aa、公比を rr とすると、
an=arn1a_n = a \cdot r^{n-1}
で表されます。
この問題では、初項 a=7a = 7、公比 r=2r = 2 であるので、これらを公式に代入します。
an=72n1a_n = 7 \cdot 2^{n-1}

3. 最終的な答え

an=72n1a_n = 7 \cdot 2^{n-1}

「代数学」の関連問題

2次関数 $f(x) = x^2 - 4x + a^2 - a$ が与えられています(ただし、$a$ は正の定数)。 (1) $y = f(x)$ のグラフの頂点の座標を $a$ を用いて表す。 (2...

二次関数最大値最小値平方完成
2025/8/14

以下の連立2次不等式を解き、$x$ の値の範囲を求めます。 (1) $\begin{cases} 3x^2 - 4x + 2 > 0 \\ x^2 - 2x + 3 < 0 \end{cases}$ ...

二次不等式連立不等式判別式
2025/8/14

複素数 $\alpha$ と $\beta$ が与えられた条件 $\beta^2 - 2\alpha\beta + 4\alpha^2 = 0$ を満たすとき、$z = \frac{\beta}{\a...

複素数極形式二次方程式幾何学
2025/8/14

次の式を計算してください。 $\frac{1}{1-\sqrt{2}} + \frac{1}{1+\sqrt{2}} - \frac{1}{2-\sqrt{2}} - \frac{1}{2+\sqrt...

式の計算有理化分数の計算
2025/8/14

2次方程式 $x^2 + 5x - 6 = 0$ を解け。画像には、解の公式を用いて解いている途中の計算が示されています。

二次方程式解の公式因数分解
2025/8/14

画像に写っている3つの数式問題を解きます。 問題3: $\sqrt{48} + \frac{9}{\sqrt{3}} \times \sqrt{3}$ 問題4: $x + 6 = 2(x + 1)$ ...

平方根の計算一次方程式連立方程式式の計算
2025/8/14

与えられた2次関数 $f(x) = x^2 + 2ax + b$ について、以下の問いに答えます。ただし、$a, b$ は実数の定数で、$a > 0$ です。 (1) $y = f(x)$ のグラフが...

二次関数最大値最小値平方完成
2025/8/14

正の実数 $a$ に対して、実数 $x$ に関する3つの条件 $p, q, r$ が与えられている。 $p: |x-1| \leq a$ $q: |x| \leq \frac{5}{2}$ $r: x...

不等式絶対値必要十分条件命題
2025/8/14

1個250円のケーキを$x$個買ったときの代金を$y$円とするとき、以下の問いに答えます。 (1) $x$と$y$の関係を式で表します。 (2) $x$の値が5のとき、$y$の値を求めます。 (3) ...

一次関数比例方程式
2025/8/14

(1) $A$ を有理数全体の集合、$B$ を無理数全体の集合とする。空集合を $\emptyset$ とする。次の(i)〜(iv)が真の命題になるように、空欄を埋める。 (i) $A$ \_\_ $...

集合命題必要条件十分条件有理数無理数
2025/8/14