全体集合 $U$ において、$n(U) = 40$, $n(A) = 25$, $n(B) = 21$, $n(A \cap \overline{B}) = 7$ であるとき、次の値を求めます。 (1) $n(\overline{A})$ (2) $n(\overline{B})$ (3) $n(A \cap B)$ (4) $n(A \cup B)$ (5) $n(\overline{A \cap B})$ (6) $n(\overline{A \cup B})$

離散数学集合集合演算補集合要素数
2025/6/4

1. 問題の内容

全体集合 UU において、n(U)=40n(U) = 40, n(A)=25n(A) = 25, n(B)=21n(B) = 21, n(AB)=7n(A \cap \overline{B}) = 7 であるとき、次の値を求めます。
(1) n(A)n(\overline{A})
(2) n(B)n(\overline{B})
(3) n(AB)n(A \cap B)
(4) n(AB)n(A \cup B)
(5) n(AB)n(\overline{A \cap B})
(6) n(AB)n(\overline{A \cup B})

2. 解き方の手順

(1) n(A)n(\overline{A}) を求める。
A\overline{A}AA の補集合なので、n(A)=n(U)n(A)n(\overline{A}) = n(U) - n(A)
n(A)=4025=15n(\overline{A}) = 40 - 25 = 15
(2) n(B)n(\overline{B}) を求める。
B\overline{B}BB の補集合なので、n(B)=n(U)n(B)n(\overline{B}) = n(U) - n(B)
n(B)=4021=19n(\overline{B}) = 40 - 21 = 19
(3) n(AB)n(A \cap B) を求める。
n(A)=n(AB)+n(AB)n(A) = n(A \cap B) + n(A \cap \overline{B}) であるから、n(AB)=n(A)n(AB)n(A \cap B) = n(A) - n(A \cap \overline{B})
n(AB)=257=18n(A \cap B) = 25 - 7 = 18
(4) n(AB)n(A \cup B) を求める。
n(AB)=n(A)+n(B)n(AB)n(A \cup B) = n(A) + n(B) - n(A \cap B)
n(AB)=25+2118=28n(A \cup B) = 25 + 21 - 18 = 28
(5) n(AB)n(\overline{A \cap B}) を求める。
AB\overline{A \cap B}ABA \cap B の補集合なので、n(AB)=n(U)n(AB)n(\overline{A \cap B}) = n(U) - n(A \cap B)
n(AB)=4018=22n(\overline{A \cap B}) = 40 - 18 = 22
(6) n(AB)n(\overline{A \cup B}) を求める。
AB\overline{A \cup B}ABA \cup B の補集合なので、n(AB)=n(U)n(AB)n(\overline{A \cup B}) = n(U) - n(A \cup B)
n(AB)=4028=12n(\overline{A \cup B}) = 40 - 28 = 12

3. 最終的な答え

(1) n(A)=15n(\overline{A}) = 15
(2) n(B)=19n(\overline{B}) = 19
(3) n(AB)=18n(A \cap B) = 18
(4) n(AB)=28n(A \cup B) = 28
(5) n(AB)=22n(\overline{A \cap B}) = 22
(6) n(AB)=12n(\overline{A \cup B}) = 12

「離散数学」の関連問題

全体集合 $U$ を実数全体の集合とし、部分集合 $A, B, C, D$ が次のように定められている。 $A = \{x | x^2 \geq 4 \}, B = \{x | 1 \leq x \l...

集合論理必要条件十分条件
2025/6/6

集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$、$A = \{1, 3, 5, 7, 9\}$、$B = \{2, 3, 4, 5\}$が与えられています。このと...

集合集合演算補集合和集合共通部分
2025/6/6

全体集合 $U$、集合 $A$、集合 $B$ が与えられています。ここで、$U$ は12より小さい自然数全体の集合、$A = \{4, 5, 6, 7, 8\}$、$B = \{1, 3, 5, 7,...

集合補集合共通部分和集合
2025/6/6

全体集合 $U$、集合 $A$、集合 $B$ が与えられたとき、$\overline{A} \cap B$ と $A \cup \overline{B}$ を求める問題です。 ここで、 $U = \{...

集合集合演算補集合共通部分和集合
2025/6/6

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$、集合 $A = \{2, 3, 8, 10, 12\}$、集合 $B = \{3, 4, 7,...

集合集合演算共通部分和集合
2025/6/6

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$、集合 $A = \{1, 2, 4, 6, 8, 10\}$、集合 $B = \{1, 7, 9\}$ が与え...

集合補集合和集合共通部分
2025/6/6

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$、集合 $A = \{2, 4, 5, 9, 10\}$、集合 $B = \{2, 6, 7\}$ が与えられた...

集合補集合和集合共通部分
2025/6/6

集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{2, 4, 5, 9, 10\}$, $B = \{2, 6, 7\}$ が与えられています。集合...

集合共通部分和集合
2025/6/6

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$、集合 $A = \{2, 4, 5, 9, 10\}$、集合 $B = \{2, 6, 7\}$ が与えられて...

集合集合演算補集合共通部分和集合
2025/6/6

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$、部分集合 $A = \{2, 3, 4, 6, 7, 10\}$、部分集合 $B = \{2, 8, 9, 1...

集合集合演算補集合
2025/6/6