有理数全体の集合を $Q$ とするとき、与えられた数が有理数であるか否かを判定し、$\in$ または $\notin$ の記号を $\square$ に入れる問題です。具体的には、 (1) $4 \square Q$ (2) $-\frac{2}{3} \square Q$ (3) $\sqrt{2} \square Q$ の3つの問題に答えます。

数論有理数集合
2025/6/4

1. 問題の内容

有理数全体の集合を QQ とするとき、与えられた数が有理数であるか否かを判定し、\in または \notin の記号を \square に入れる問題です。具体的には、
(1) 4Q4 \square Q
(2) 23Q-\frac{2}{3} \square Q
(3) 2Q\sqrt{2} \square Q
の3つの問題に答えます。

2. 解き方の手順

有理数とは、分数 ab\frac{a}{b}aa, bb は整数、b0b \ne 0)で表せる数のことです。
(1) 4は整数なので、41\frac{4}{1}と表すことができます。したがって、4は有理数です。
(2) 23-\frac{2}{3} はすでに分数の形で表されており、分子・分母は整数なので、有理数です。
(3) 2\sqrt{2} は無理数であり、分数で表すことができません。したがって、2\sqrt{2} は有理数ではありません。

3. 最終的な答え

(1) 4Q4 \in Q
(2) 23Q-\frac{2}{3} \in Q
(3) 2Q\sqrt{2} \notin Q

「数論」の関連問題

$a_1, a_2, a_3, a_4, a_5$は正の整数で、$a_1 < a_2 < a_3 < a_4 < a_5$とする。 2つの集合$A = \{a_1, a_2, a_3, a_4, a_...

集合整数の性質方程式場合分け
2025/6/6

与えられた数について、正の約数の個数と、その約数の総和を求める問題です。 (1) $5 \cdot 2^3$ (2) 108 (3) 540

約数素因数分解約数の個数約数の総和
2025/6/6

与えられた3つの数について、正の約数の個数と、それらの約数の総和をそれぞれ求める問題です。 (1) $5 \cdot 2^3$ (2) $108$ (3) $540$

約数素因数分解約数の個数約数の総和
2025/6/6

## 1. 問題の内容

桁数合同式三平方の定理整数の性質べき乗
2025/6/6

問題は、125!の末尾に0が何個連続して並ぶか(イ)を求め、次に $n!$ が $10^{40}$ で割り切れるような最小の $n$ の値(ウ)を求めるものです。

階乗素因数分解末尾の0の個数
2025/6/5

正の整数 $n$ が与えられ、$n$ と $12$ の最小公倍数が $168$ であるような $n$ を全て求める問題です。

最小公倍数素因数分解整数の性質
2025/6/5

正の整数 $n$ と $24$ の最小公倍数が $504$ であるような $n$ をすべて求める問題です。

最小公倍数素因数分解整数の性質
2025/6/5

$m, n$ は自然数であるとき、$30!$ が $2^m$ で割り切れるような最大の $m$ の値を求めます。

素因数分解階乗床関数素因数の個数
2025/6/5

自然数の列を、第$n$群に$2^{n-1}$個の数が入るように群に分ける。 (1) 第$n$群の最初の数を$n$の式で表す。 (2) 第1群から第$n$群までに入るすべての数の和を求める。 (3) 1...

数列群数列指数和の計算
2025/6/5

自然数の列を、第 $n$ 群に $2^{n-1}$ 個の数が入るように群に分ける。 (1) 第 $n$ 群の最初の数を $n$ の式で表す。 (2) 第1群から第 $n$ 群までに入るすべての数の和を...

数列群分け等比数列等差数列指数
2025/6/5