与えられた式 $x+x^{-1}$ を計算します。

代数学分数式式の計算通分代数
2025/6/4

1. 問題の内容

与えられた式 x+x1x+x^{-1} を計算します。

2. 解き方の手順

まず、x1x^{-1}1x\frac{1}{x} で書き換えます。すると、与えられた式は x+1xx + \frac{1}{x} となります。
次に、この式を通分します。xxx1\frac{x}{1} と考えると、
x+1x=x1+1x=xx1x+1x=x2x+1xx + \frac{1}{x} = \frac{x}{1} + \frac{1}{x} = \frac{x \cdot x}{1 \cdot x} + \frac{1}{x} = \frac{x^2}{x} + \frac{1}{x}
となります。
共通の分母 xx を用いて、分子を足し合わせます。
x2x+1x=x2+1x\frac{x^2}{x} + \frac{1}{x} = \frac{x^2 + 1}{x}

3. 最終的な答え

x2+1x\frac{x^2+1}{x}