与えられた座標がそれぞれ第何象限にあるかを答える問題です。座標は(3, 5), (4, -1), (-2, -3), (-5, 2)の4つです。

幾何学座標平面象限
2025/6/4

1. 問題の内容

与えられた座標がそれぞれ第何象限にあるかを答える問題です。座標は(3, 5), (4, -1), (-2, -3), (-5, 2)の4つです。

2. 解き方の手順

平面座標は、x軸とy軸で区切られた4つの象限に分けられます。各象限におけるx座標とy座標の符号は以下の通りです。
- 第1象限:x > 0, y > 0
- 第2象限:x < 0, y > 0
- 第3象限:x < 0, y < 0
- 第4象限:x > 0, y < 0
与えられた各座標の符号を確認し、上記のルールに従って象限を判断します。
(1) (3, 5) : x > 0, y > 0 なので、第1象限です。
(2) (4, -1) : x > 0, y < 0 なので、第4象限です。
(3) (-2, -3) : x < 0, y < 0 なので、第3象限です。
(4) (-5, 2) : x < 0, y > 0 なので、第2象限です。

3. 最終的な答え

(1) 第1象限
(2) 第4象限
(3) 第3象限
(4) 第2象限

「幾何学」の関連問題

点P(3,5)を通り、三角形ABCの面積を二等分する直線の式を求めよ。ただし、A(5,7), B(0,2), C(8,0)である。

三角形面積直線座標平面
2025/6/6

3つの図それぞれについて、点Pを通り、三角形ABCの面積を二等分する直線の式を求める問題です。

幾何学面積直線三角形座標平面
2025/6/6

(1) 直線 $l: 2x-y-4=0$ に関して点 $A(1, 3)$ と対称な点 $B$ の座標を求める。また、点 $C(3, 5)$ とし、$P$ を直線 $l$ 上の点とするとき、$AP + ...

座標平面対称点距離の最小化円と直線三角関数
2025/6/6

関数 $y = \frac{1}{2}x^2$ 上に2点 A, B があり、それぞれの x 座標は -4, 2 である。直線 AB と y 軸との交点を C とする。 (1) 直線 AB の式を求める...

二次関数図形面積直線座標
2025/6/6

四角形ABCDの2つの対角線ACとBDの交点をOとする。AC = 7, BD = 10, ∠AOB = 45°であるとき、四角形ABCDの面積を求めよ。

四角形面積対角線三角関数
2025/6/6

三角形ABCにおいて、$AB=4, AC=5$とする。角BACの二等分線が辺BCと交わる点をDとする。 (1) 線分ADを3:2に内分する点をE、直線BEと辺ACとの交点をFとする。BD:DC, AF...

三角形角の二等分線メネラウスの定理チェバの定理相似面積比外接円余弦定理
2025/6/6

四角形ABCDが円に内接していて、AB=1, BC=$\sqrt{2}$, CD=1, DA=$2\sqrt{2}$であるとき、 (1) BDの長さを求めよ。 (2) 四角形ABCDの面積を求めよ。

円に内接する四角形余弦定理面積三角比
2025/6/6

(1) 点(0, 10)から円 $x^2 + y^2 = 25$ に引いた接線の方程式を求める問題です。 (2) (1) 2点(-1, 0), (1, 2) から等距離にある点Pの軌跡の方程...

接線軌跡放物線平方完成
2025/6/6

問題は3つあります。 (1) $0 < \alpha < \frac{\pi}{2}$, $\frac{\pi}{2} < \beta < \pi$, $\cos \alpha = \frac{3}{...

三角関数三角比加法定理直線の傾き
2025/6/6

平行六面体ABCD-PQRSにおいて、三角形BDPの重心をGとする。3点A, G, Rが一直線上にある理由を「$\vec{AR} = \bigcirc \vec{AG}$が成り立つから」の形で答える問...

ベクトル空間ベクトル重心一直線上平行六面体
2025/6/6