$(\sqrt{10} - \sqrt{3})(\sqrt{10} + \sqrt{3})$ を計算し、$((\sqrt{\Box})^2 - (\sqrt{\Box})^2 = \Box)$ の形式で答えよ。

代数学平方根式の展開計算
2025/6/4

1. 問題の内容

(103)(10+3)(\sqrt{10} - \sqrt{3})(\sqrt{10} + \sqrt{3}) を計算し、(()2()2=)((\sqrt{\Box})^2 - (\sqrt{\Box})^2 = \Box) の形式で答えよ。

2. 解き方の手順

与えられた式 (103)(10+3)(\sqrt{10} - \sqrt{3})(\sqrt{10} + \sqrt{3}) を計算します。
これは (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2 の形をしているので、この公式を利用します。
a=10a = \sqrt{10}, b=3b = \sqrt{3} とすると、
(103)(10+3)=(10)2(3)2(\sqrt{10} - \sqrt{3})(\sqrt{10} + \sqrt{3}) = (\sqrt{10})^2 - (\sqrt{3})^2
=103= 10 - 3
=7= 7
よって、(10)2(3)2=7(\sqrt{10})^2 - (\sqrt{3})^2 = 7 となります。

3. 最終的な答え

7

「代数学」の関連問題

絶対値を含む不等式 $|x-2| \ge 3$ を解きます。

不等式絶対値
2025/6/6

問題は、xについての2次式 $x^2 + mx - 72$ が因数分解できるとき、mが1桁の自然数である条件を満たすmの値をすべて求める問題です。

二次式因数分解整数方程式
2025/6/6

画像に写っているのは、次の2つの問題を解く問題です。 (1) $ |x-2| < 3 $ (2) $ x - 4 < 3x $

不等式絶対値一次不等式
2025/6/6

与えられた4つの方程式を解く問題です。 (1) $x^3 = 1$ (2) $x^4 - 4x^2 + 3 = 0$ (3) $x^3 + x^2 - 7x + 2 = 0$ (4) $2x^4 - ...

方程式高次方程式三次方程式四次方程式因数分解解の公式
2025/6/6

与えられた4つの方程式を解く問題です。 (1) $x^3 = 1$ (2) $x^4 - 4x^2 + 3 = 0$ (3) $x^3 + x^2 - 7x + 2 = 0$ (4) $2x^4 - ...

方程式解の公式因数分解複素数
2025/6/6

次の方程式を解きます。 (1) $z^3 = 27$ (2) $z^6 = -1$ (3) $z^3 = -8i$ (4) $z^4 = -32(1 + \sqrt{3}i)$

複素数複素平面n乗根
2025/6/6

方程式 $x^2 + y^2 + ax - (a+3)y + \frac{5}{2}a^2 = 0$ が円を表すとき、以下の問いに答える。 (1) 定数 $a$ の値の範囲を求めよ。 (2) この円の...

二次方程式二次関数最大値標準形
2025/6/6

$x+y=9$ と $x-y=-5$ のとき、$x^2 - y^2$ の値を求めよ。

因数分解連立方程式式の計算
2025/6/6

$a$ を正の数とする。2次方程式 $x^2 - ax + 1 = 0$ が $p - q = 1$ を満たす実数解 $p$ と $q$ をもつとき、$a$ と $p$ の値を求めよ。

二次方程式解と係数の関係実数解
2025/6/6

与えられた二次方程式 $4x^2 - 8x - 3 = 0$ の解を、解の公式を用いて求める問題です。解は $x = \frac{ア \pm \sqrt{イ}}{ウ}$ の形で表されます。ア、イ、ウに...

二次方程式解の公式平方根の計算
2025/6/6