$\sin \alpha + \sin \beta = \frac{1}{3}$、$\cos \alpha + \cos \beta = \frac{1}{2}$のとき、$\cos(\alpha - \beta)$の値を求めよ。解析学三角関数加法定理三角関数の合成2025/6/51. 問題の内容sinα+sinβ=13\sin \alpha + \sin \beta = \frac{1}{3}sinα+sinβ=31、cosα+cosβ=12\cos \alpha + \cos \beta = \frac{1}{2}cosα+cosβ=21のとき、cos(α−β)\cos(\alpha - \beta)cos(α−β)の値を求めよ。2. 解き方の手順与えられた式をそれぞれ2乗する。(sinα+sinβ)2=sin2α+2sinαsinβ+sin2β=(13)2=19(\sin \alpha + \sin \beta)^2 = \sin^2 \alpha + 2 \sin \alpha \sin \beta + \sin^2 \beta = \left( \frac{1}{3} \right)^2 = \frac{1}{9}(sinα+sinβ)2=sin2α+2sinαsinβ+sin2β=(31)2=91(cosα+cosβ)2=cos2α+2cosαcosβ+cos2β=(12)2=14(\cos \alpha + \cos \beta)^2 = \cos^2 \alpha + 2 \cos \alpha \cos \beta + \cos^2 \beta = \left( \frac{1}{2} \right)^2 = \frac{1}{4}(cosα+cosβ)2=cos2α+2cosαcosβ+cos2β=(21)2=41上記の二つの式を足し合わせる。(sin2α+cos2α)+(sin2β+cos2β)+2(sinαsinβ+cosαcosβ)=19+14(\sin^2 \alpha + \cos^2 \alpha) + (\sin^2 \beta + \cos^2 \beta) + 2 (\sin \alpha \sin \beta + \cos \alpha \cos \beta) = \frac{1}{9} + \frac{1}{4}(sin2α+cos2α)+(sin2β+cos2β)+2(sinαsinβ+cosαcosβ)=91+411+1+2cos(α−β)=436+9361 + 1 + 2 \cos(\alpha - \beta) = \frac{4}{36} + \frac{9}{36}1+1+2cos(α−β)=364+3692+2cos(α−β)=13362 + 2 \cos(\alpha - \beta) = \frac{13}{36}2+2cos(α−β)=36132cos(α−β)=1336−22 \cos(\alpha - \beta) = \frac{13}{36} - 22cos(α−β)=3613−22cos(α−β)=1336−72362 \cos(\alpha - \beta) = \frac{13}{36} - \frac{72}{36}2cos(α−β)=3613−36722cos(α−β)=13−72362 \cos(\alpha - \beta) = \frac{13 - 72}{36}2cos(α−β)=3613−722cos(α−β)=−59362 \cos(\alpha - \beta) = - \frac{59}{36}2cos(α−β)=−3659cos(α−β)=−5972\cos(\alpha - \beta) = - \frac{59}{72}cos(α−β)=−72593. 最終的な答えcos(α−β)=−5972\cos(\alpha - \beta) = - \frac{59}{72}cos(α−β)=−7259