$x = \frac{\sqrt{6}-\sqrt{2}}{2}$ 、 $y = \frac{\sqrt{6}+\sqrt{2}}{2}$のとき、 $\frac{1}{x^2} - \frac{1}{y^2}$ と $x^3 + y^3$ の値を求めよ。代数学式の計算平方根有理化因数分解式の値2025/3/271. 問題の内容x=6−22x = \frac{\sqrt{6}-\sqrt{2}}{2}x=26−2 、 y=6+22y = \frac{\sqrt{6}+\sqrt{2}}{2}y=26+2のとき、1x2−1y2\frac{1}{x^2} - \frac{1}{y^2}x21−y21 と x3+y3x^3 + y^3x3+y3 の値を求めよ。2. 解き方の手順まず、x2x^2x2とy2y^2y2を計算します。x2=(6−22)2=6−212+24=8−434=2−3x^2 = (\frac{\sqrt{6}-\sqrt{2}}{2})^2 = \frac{6 - 2\sqrt{12} + 2}{4} = \frac{8 - 4\sqrt{3}}{4} = 2 - \sqrt{3}x2=(26−2)2=46−212+2=48−43=2−3y2=(6+22)2=6+212+24=8+434=2+3y^2 = (\frac{\sqrt{6}+\sqrt{2}}{2})^2 = \frac{6 + 2\sqrt{12} + 2}{4} = \frac{8 + 4\sqrt{3}}{4} = 2 + \sqrt{3}y2=(26+2)2=46+212+2=48+43=2+3次に、1x2\frac{1}{x^2}x21と1y2\frac{1}{y^2}y21を計算します。1x2=12−3=2+3(2−3)(2+3)=2+34−3=2+3\frac{1}{x^2} = \frac{1}{2 - \sqrt{3}} = \frac{2 + \sqrt{3}}{(2 - \sqrt{3})(2 + \sqrt{3})} = \frac{2 + \sqrt{3}}{4 - 3} = 2 + \sqrt{3}x21=2−31=(2−3)(2+3)2+3=4−32+3=2+31y2=12+3=2−3(2+3)(2−3)=2−34−3=2−3\frac{1}{y^2} = \frac{1}{2 + \sqrt{3}} = \frac{2 - \sqrt{3}}{(2 + \sqrt{3})(2 - \sqrt{3})} = \frac{2 - \sqrt{3}}{4 - 3} = 2 - \sqrt{3}y21=2+31=(2+3)(2−3)2−3=4−32−3=2−3したがって、1x2−1y2=(2+3)−(2−3)=23\frac{1}{x^2} - \frac{1}{y^2} = (2 + \sqrt{3}) - (2 - \sqrt{3}) = 2\sqrt{3}x21−y21=(2+3)−(2−3)=23次に、x+yx+yx+yとxyxyxyを計算します。x+y=6−22+6+22=262=6x+y = \frac{\sqrt{6}-\sqrt{2}}{2} + \frac{\sqrt{6}+\sqrt{2}}{2} = \frac{2\sqrt{6}}{2} = \sqrt{6}x+y=26−2+26+2=226=6xy=6−22⋅6+22=6−24=44=1xy = \frac{\sqrt{6}-\sqrt{2}}{2} \cdot \frac{\sqrt{6}+\sqrt{2}}{2} = \frac{6 - 2}{4} = \frac{4}{4} = 1xy=26−2⋅26+2=46−2=44=1x3+y3=(x+y)3−3xy(x+y)=(6)3−3(1)(6)=66−36=36x^3 + y^3 = (x+y)^3 - 3xy(x+y) = (\sqrt{6})^3 - 3(1)(\sqrt{6}) = 6\sqrt{6} - 3\sqrt{6} = 3\sqrt{6}x3+y3=(x+y)3−3xy(x+y)=(6)3−3(1)(6)=66−36=363. 最終的な答え1x2−1y2=23\frac{1}{x^2} - \frac{1}{y^2} = 2\sqrt{3}x21−y21=23x3+y3=36x^3 + y^3 = 3\sqrt{6}x3+y3=36