三角形ABCにおいて、辺a=8、辺b=6、角C=90°であるとき、辺cの長さを求めよ。

幾何学直角三角形三平方の定理辺の長さ
2025/3/27

1. 問題の内容

三角形ABCにおいて、辺a=8、辺b=6、角C=90°であるとき、辺cの長さを求めよ。

2. 解き方の手順

三角形ABCは角Cが90度の直角三角形なので、三平方の定理を利用して辺cの長さを求めることができます。三平方の定理は、a2+b2=c2a^2 + b^2 = c^2で表されます。
まず、a2a^2b2b^2を計算します。
a2=82=64a^2 = 8^2 = 64
b2=62=36b^2 = 6^2 = 36
次に、a2+b2a^2 + b^2を計算します。
a2+b2=64+36=100a^2 + b^2 = 64 + 36 = 100
したがって、c2=100c^2 = 100となります。
c=100=10c = \sqrt{100} = 10
辺の長さなので、ccは正の値をとります。

3. 最終的な答え

c=10

「幾何学」の関連問題

直線 $l: y = x+2$ と $m: y = -2x+8$ がある。Aは $l$ と $m$ の交点、Bは $x$ 軸上にあり、Aと $x$ 座標が等しい点である。また、直線 $n: x = k...

直線座標交点距離図形
2025/4/12

(1) $xy$ 平面上に、2点 $O(0, 0)$ と $A(3, 0)$ がある。点 $P$ が $OP:AP = 1:1$ を満たしながら動くとき、$P$ の軌跡は直線であり、その方程式を求めよ...

軌跡直線座標平面
2025/4/12

円 $(x+2)^2 + (y-5)^2 = 10$ と直線 $x + 3y = k$ が共有点を持つような定数 $k$ の値の範囲を求める。

直線共有点距離不等式
2025/4/12

xy平面上に点P(2, 3)と直線 $l: y=2x-4$ がある。 (1) 点Pを通り直線$l$に平行な直線の方程式を求める。 (2) 点Pを通り直線$l$に垂直な直線の方程式を求める。 (3) 点...

直線点と直線の距離平行垂直
2025/4/12

平行四辺形ABCDにおいて、対角線の交点をO、辺BCの中点をE、線分AEとBDの交点をFとする。このとき、AF:FEと△AFO:平行四辺形ABCDの比を求める問題です。

平行四辺形相似面積比比の計算対角線中点
2025/4/12

底面が正方形の正四角錐O-ABCDがあり、底面の対角線の交点をEとします。 (1) AEの長さを求めます。 (2) この正四角錐の体積を求めます。 AB = 6cm, OA = 9cmです。

正四角錐三平方の定理体積正方形空間図形
2025/4/12

三角形ABCにおいて、BDとCDはそれぞれ角ABCと角ACBの二等分線である。角BDCは114度である。角BAC(つまり角A)の大きさを求める。

三角形角度角の二等分線内角の和
2025/4/12

問題は、指定された面積を持つ正方形を方眼紙に描くことです。方眼の1マスの1辺の長さは1cmとします。問題は2つあり、(1)は面積が8cm²の正方形、(2)は面積が10cm²の正方形を描くことです。

正方形面積平方根作図
2025/4/12

点A(2, 6)を通り、傾きが$1/2$の直線$l$がある。点Bは直線$l$と$x$軸との交点である。原点を通る直線$m$が点Cで直線$l$と直交している。以下の問いに答えよ。 (1) 点Bの座標を求...

直線座標円錐体積直交回転体
2025/4/12

三角形ABCにおいて、$BC=a$, $CA=b$, $AB=c$とし、$a^2 = 5 - \sqrt{2} - \sqrt{6}$, $b^2 = 1$, $c^2 = 4$とする。 (1) $\...

三角比余弦定理三角形の面積角度
2025/4/12