10個の玉が入った袋があり、そのうち6個が白玉、4個が赤玉である。この袋から同時に3個の玉を取り出すとき、少なくとも1個が赤玉である確率を求める。

確率論・統計学確率組み合わせ事象赤玉白玉
2025/6/5

1. 問題の内容

10個の玉が入った袋があり、そのうち6個が白玉、4個が赤玉である。この袋から同時に3個の玉を取り出すとき、少なくとも1個が赤玉である確率を求める。

2. 解き方の手順

少なくとも1個が赤玉である確率は、全ての玉の組み合わせから、赤玉が1つも含まれない(つまり全て白玉である)確率を引くことで求められる。
まず、10個の玉から3個を選ぶ全ての組み合わせの数を計算する。これは組み合わせの公式を使って 10C3 {}_{10}C_3 と表せる。
10C3=10!3!(103)!=10!3!7!=10×9×83×2×1=10×3×4=120 {}_{10}C_3 = \frac{10!}{3!(10-3)!} = \frac{10!}{3!7!} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = 10 \times 3 \times 4 = 120
次に、3個全てが白玉である組み合わせの数を計算する。これは6個の白玉から3個を選ぶ組み合わせなので 6C3 {}_6C_3 と表せる。
6C3=6!3!(63)!=6!3!3!=6×5×43×2×1=20 {}_6C_3 = \frac{6!}{3!(6-3)!} = \frac{6!}{3!3!} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20
3個全てが白玉である確率は、6C310C3=20120=16 \frac{{}_6C_3}{{}_{10}C_3} = \frac{20}{120} = \frac{1}{6} である。
少なくとも1個が赤玉である確率は、1から3個全てが白玉である確率を引いたものなので、
116=56 1 - \frac{1}{6} = \frac{5}{6}

3. 最終的な答え

少なくとも1個が赤玉である確率は 56 \frac{5}{6} である。

「確率論・統計学」の関連問題

平均 $\mu$、分散 $\sigma^2$ の母集団から無作為に抽出した $n$ 個の標本 $X_1, \dots, X_n$ があるとき、標本平均 $\overline{X}$ を $\overl...

標本平均期待値分散中心極限定理確率分布
2025/6/6

確率変数 $X$ は、確率 $p$ で $1$ をとり、確率 $1-p$ で $0$ をとる。ただし、$0 \le p \le 1$ である。このとき、以下の問いに答える。 (1) $X$ の期待値 ...

確率変数期待値分散確率関数ベルヌーイ分布
2025/6/6

確率変数 $X$ が、確率 $p$ で 1 をとり、確率 $1-p$ で 0 をとるとします。ただし、$0 \le p \le 1$ です。 (1) $X$ の期待値 $E[X]$ と分散 $V[X]...

確率変数期待値分散確率関数ベルヌーイ分布
2025/6/6

白玉2つと赤玉5つが入っている袋から1個の玉を取り出し、色を調べてから袋に戻す操作を40回繰り返す。白玉を取り出す回数 $X$ は二項分布 $B(n, p)$ に従う。 (1) $n$ と $p$ を...

確率二項分布期待値分散標準偏差
2025/6/6

1から4までの数字が書かれたカードが合計10枚あります。1が4枚、2が3枚、3が2枚、4が1枚です。この中からランダムに1枚を選び、そのカードに書かれた数をXとします。Xの期待値E(X)、X^2の期待...

期待値分散確率分布
2025/6/6

8人を指定された人数でいくつかのグループに分ける場合の数を計算する問題です。 (1) 8人をA, B, C, Dの4つの組に、2人ずつ分ける場合の数を求める。 (2) 8人を2人ずつの4つの組に分ける...

組み合わせ場合の数順列二項係数
2025/6/6

確率変数 $X$ の期待値が $E[X] = \frac{5}{2}$、分散が $V[X] = \frac{5}{4}$ であるとき、確率変数 $-2X+3$ の期待値、分散、標準偏差を求める。

期待値分散標準偏差確率変数線形性
2025/6/6

1と書かれたカードが4枚、2と書かれたカードが3枚、3と書かれたカードが2枚、4と書かれたカードが1枚、合計10枚のカードがある。この中から無作為に1枚カードを取り出し、取り出したカードに書かれた数を...

期待値分散確率変数確率分布
2025/6/6

大小中3個のサイコロを投げるとき、以下の条件を満たす場合はそれぞれ何通りあるか。 (1) 目がすべて異なる (2) 少なくとも2個が同じ目 (3) 目の積が3の倍数 (4) 目の和が奇数

確率組み合わせサイコロ場合の数
2025/6/6

大小中3個のサイコロを投げたとき、以下の条件を満たす場合の数をそれぞれ求めます。 (1) 目がすべて異なる (2) 少なくとも2個が同じ目 (3) 目の積が3の倍数 (4) 目の和が奇数

確率場合の数サイコロ組み合わせ
2025/6/6