三角形ABCにおいて、$b=3$, $c=4$, $\angle A = 60^\circ$であるとき、$a$の値を求めよ。

幾何学三角形余弦定理辺の長さ角度
2025/3/27

1. 問題の内容

三角形ABCにおいて、b=3b=3, c=4c=4, A=60\angle A = 60^\circであるとき、aaの値を求めよ。

2. 解き方の手順

余弦定理を用いて、aaを求めます。余弦定理は以下の通りです。
a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc \cos A
与えられた値を代入すると、
a2=32+422(3)(4)cos60a^2 = 3^2 + 4^2 - 2(3)(4) \cos 60^\circ
cos60=12\cos 60^\circ = \frac{1}{2}なので、
a2=9+1624×12a^2 = 9 + 16 - 24 \times \frac{1}{2}
a2=2512a^2 = 25 - 12
a2=13a^2 = 13
a=13a = \sqrt{13}
ここで、a>0a>0より正の平方根のみを取ります。

3. 最終的な答え

13\sqrt{13}

「幾何学」の関連問題

正四面体の4つの面に、赤、青、黄、緑の4色をそれぞれ1面ずつ塗るとき、異なる塗り方は何通りあるか求める問題です。

正四面体塗り分け回転対称性組み合わせ
2025/5/8

円周上に異なる7個の点がある。このうちいくつかの点を選び、それらを頂点とする三角形と四角形はそれぞれ何通りできるか。

組み合わせ円周三角形四角形組み合わせ
2025/5/8

図のように3本の平行線と5本の平行線が交わっています。これらの平行線で囲まれる平行四辺形は全部で何個ありますか?

組み合わせ平行四辺形図形
2025/5/8

線分上に点A, B, C, Dがあるとき、$AC:CD = 3:2$ と $AB:BD = 4:5$ が与えられています。このとき、$AB:CD$を最も簡単な整数比で表す問題です。

線分比の計算幾何
2025/5/8

$\alpha > 0^\circ$, $\beta > 0^\circ$, $\alpha + \beta < 180^\circ$ かつ $\sin^2 \alpha + \sin^2 \beta...

三角関数三角比角度不等式
2025/5/8

与えられた画像には複数の問題が含まれていますが、ここでは問題1の④、すなわち正六角形ABCDEFにおいて、CDの中点をQ、BCの中点をRとするとき、$ \vec{AB} = \vec{a} $、$ \...

ベクトル正六角形ベクトルの分解図形
2025/5/8

2点AとBが与えられたとき、2点間の距離を求める問題です。 (1) A(2, 3), B(4, 7) (2) A(-1, 4), B(5, -2)

距離座標平面2点間の距離
2025/5/8

三角形$ABC$と三角形$A'B'C'$において、$\angle A = \angle A'$, $\angle B = \angle B' = 90^\circ$, $AB = 2$, $BC = ...

三角形相似三平方の定理
2025/5/8

直線 $l: y = 2x - 3$ と点 $A(0, 2)$ が与えられている。直線 $l$ に関して点 $A$ と対称な点 $P$ の座標を求める。

座標平面対称点直線傾き垂直連立方程式
2025/5/7

円に内接する四角形ABCDがあり、$AB = \sqrt{2}$, $BC = 4$, $CD = 3\sqrt{2}$, $DA = 2$である。 対角線BDの長さを求め、四角形ABCDの面積を求め...

四角形トレミーの定理余弦定理面積
2025/5/7