三角形ABCにおいて、$a=\sqrt{11}$, $b=4$, $c=5$であるとき、$\cos A$の値を求めよ。

幾何学三角形余弦定理三角比
2025/3/27

1. 問題の内容

三角形ABCにおいて、a=11a=\sqrt{11}, b=4b=4, c=5c=5であるとき、cosA\cos Aの値を求めよ。

2. 解き方の手順

余弦定理を用いてcosA\cos Aを求めます。余弦定理は以下の通りです。
a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc \cos A
この式を変形してcosA\cos Aを求めます。
2bccosA=b2+c2a22bc \cos A = b^2 + c^2 - a^2
cosA=b2+c2a22bc\cos A = \frac{b^2 + c^2 - a^2}{2bc}
与えられた値を代入します。
a=11a = \sqrt{11}, b=4b = 4, c=5c = 5
cosA=42+52(11)2245\cos A = \frac{4^2 + 5^2 - (\sqrt{11})^2}{2 \cdot 4 \cdot 5}
cosA=16+251140\cos A = \frac{16 + 25 - 11}{40}
cosA=3040\cos A = \frac{30}{40}
cosA=34\cos A = \frac{3}{4}

3. 最終的な答え

cosA=34\cos A = \frac{3}{4}

「幾何学」の関連問題

三角形ABCにおいて、$a=2$, $c=2\sqrt{2}$, $C=135^\circ$のとき、角Bと外接円の半径Rを求めよ。

三角比正弦定理三角形外接円
2025/5/8

三角形ABCにおいて、辺の長さが$a=6, b=10, c=14$であり、角Cの二等分線と辺ABの交点をDとする。以下の値を求めます。 (1) 角Cの大きさ (2) 三角形ABCの面積S (3) 三角...

三角形余弦定理正弦定理面積内接円外接円角の二等分線
2025/5/8

直方体ABCD-EFGHにおいて、$AB = \sqrt{6}, AD = \sqrt{3}, AE = 1$である。 (1) $\triangle{ACF}$の面積を求める。 (2) 点Bから$\t...

空間図形三平方の定理三角比体積面積
2025/5/8

4. 直方体ABCD-EFGHにおいて、$AB=\sqrt{6}$, $AD=\sqrt{3}$, $AE=1$であるとき、 (1) $\triangle ACF$の面積を求めなさい。 (2) 点Bか...

空間図形三平方の定理余弦定理正弦定理体積三角比
2025/5/8

円に内接する四角形ABCDにおいて、AB=3, BC=1, CD=DA=4であるとき、以下の問いに答える問題です。 (1) 対角線BDの長さを求める。 (2) 四角形ABCDの面積を求める。

四角形内接余弦定理面積
2025/5/8

円に内接する四角形ABCDにおいて、$AB=3$, $BC=1$, $CD=DA=4$ であるとき、対角線BDの長さを求める問題です。

円に内接する四角形余弦定理幾何対角線
2025/5/8

$\sin A : \sin B : \sin C = 5 : 4 : 6$ のとき、一番小さい角の正接の値を求める問題です。

三角比正弦定理余弦定理三角形正接
2025/5/8

三角形において、$a = 7, b = 3, A = 120^\circ$ のとき、$c$ の値を求めよ。

三角形余弦定理辺の長さ
2025/5/8

問題3では、放物線 $y=2x^2$ 上の2点 A, B を通る直線 AB の式と、三角形 OAB の面積を求める。ただし、点 A の x 座標は -3, 点 B の x 座標は 2 である。 問題4...

放物線三角形の面積直線の式座標平面
2025/5/8

半径 $r$ cm、高さ $h$ cmの円柱Pがある。円柱Pの半径を2倍、高さを半分にした円柱Qについて、以下の問いに答える。 (1) 円柱P, Qの体積をそれぞれ文字式で表せ。 (2) 円柱Qの体積...

円柱体積図形
2025/5/8