関数 $f(x) = x^4 - 3x^3 - x^2 + 4$ を導関数の定義に従って微分する。解析学微分導関数極限2025/6/51. 問題の内容関数 f(x)=x4−3x3−x2+4f(x) = x^4 - 3x^3 - x^2 + 4f(x)=x4−3x3−x2+4 を導関数の定義に従って微分する。2. 解き方の手順導関数の定義は次の通りです。f′(x)=limh→0f(x+h)−f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}f′(x)=limh→0hf(x+h)−f(x)まず、f(x+h)f(x+h)f(x+h) を計算します。f(x+h)=(x+h)4−3(x+h)3−(x+h)2+4f(x+h) = (x+h)^4 - 3(x+h)^3 - (x+h)^2 + 4f(x+h)=(x+h)4−3(x+h)3−(x+h)2+4=(x4+4x3h+6x2h2+4xh3+h4)−3(x3+3x2h+3xh2+h3)−(x2+2xh+h2)+4= (x^4 + 4x^3h + 6x^2h^2 + 4xh^3 + h^4) - 3(x^3 + 3x^2h + 3xh^2 + h^3) - (x^2 + 2xh + h^2) + 4=(x4+4x3h+6x2h2+4xh3+h4)−3(x3+3x2h+3xh2+h3)−(x2+2xh+h2)+4=x4+4x3h+6x2h2+4xh3+h4−3x3−9x2h−9xh2−3h3−x2−2xh−h2+4= x^4 + 4x^3h + 6x^2h^2 + 4xh^3 + h^4 - 3x^3 - 9x^2h - 9xh^2 - 3h^3 - x^2 - 2xh - h^2 + 4=x4+4x3h+6x2h2+4xh3+h4−3x3−9x2h−9xh2−3h3−x2−2xh−h2+4次に、f(x+h)−f(x)f(x+h) - f(x)f(x+h)−f(x) を計算します。f(x+h)−f(x)=(x4+4x3h+6x2h2+4xh3+h4−3x3−9x2h−9xh2−3h3−x2−2xh−h2+4)−(x4−3x3−x2+4)f(x+h) - f(x) = (x^4 + 4x^3h + 6x^2h^2 + 4xh^3 + h^4 - 3x^3 - 9x^2h - 9xh^2 - 3h^3 - x^2 - 2xh - h^2 + 4) - (x^4 - 3x^3 - x^2 + 4)f(x+h)−f(x)=(x4+4x3h+6x2h2+4xh3+h4−3x3−9x2h−9xh2−3h3−x2−2xh−h2+4)−(x4−3x3−x2+4)=4x3h+6x2h2+4xh3+h4−9x2h−9xh2−3h3−2xh−h2= 4x^3h + 6x^2h^2 + 4xh^3 + h^4 - 9x^2h - 9xh^2 - 3h^3 - 2xh - h^2=4x3h+6x2h2+4xh3+h4−9x2h−9xh2−3h3−2xh−h2=(4x3−9x2−2x)h+(6x2−9x−1)h2+(4x−3)h3+h4= (4x^3 - 9x^2 - 2x)h + (6x^2 - 9x - 1)h^2 + (4x - 3)h^3 + h^4=(4x3−9x2−2x)h+(6x2−9x−1)h2+(4x−3)h3+h4次に、f(x+h)−f(x)h\frac{f(x+h) - f(x)}{h}hf(x+h)−f(x) を計算します。f(x+h)−f(x)h=(4x3−9x2−2x)h+(6x2−9x−1)h2+(4x−3)h3+h4h\frac{f(x+h) - f(x)}{h} = \frac{(4x^3 - 9x^2 - 2x)h + (6x^2 - 9x - 1)h^2 + (4x - 3)h^3 + h^4}{h}hf(x+h)−f(x)=h(4x3−9x2−2x)h+(6x2−9x−1)h2+(4x−3)h3+h4=4x3−9x2−2x+(6x2−9x−1)h+(4x−3)h2+h3= 4x^3 - 9x^2 - 2x + (6x^2 - 9x - 1)h + (4x - 3)h^2 + h^3=4x3−9x2−2x+(6x2−9x−1)h+(4x−3)h2+h3最後に、h→0h \to 0h→0 の極限を取ります。f′(x)=limh→0f(x+h)−f(x)h=limh→0[4x3−9x2−2x+(6x2−9x−1)h+(4x−3)h2+h3]f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} [4x^3 - 9x^2 - 2x + (6x^2 - 9x - 1)h + (4x - 3)h^2 + h^3]f′(x)=limh→0hf(x+h)−f(x)=limh→0[4x3−9x2−2x+(6x2−9x−1)h+(4x−3)h2+h3]=4x3−9x2−2x= 4x^3 - 9x^2 - 2x=4x3−9x2−2x3. 最終的な答えf′(x)=4x3−9x2−2xf'(x) = 4x^3 - 9x^2 - 2xf′(x)=4x3−9x2−2x