$\int \sin^3(x) dx$ を計算する問題です。積分定数は $C$ とします。解析学積分三角関数置換積分2025/6/61. 問題の内容∫sin3(x)dx\int \sin^3(x) dx∫sin3(x)dx を計算する問題です。積分定数は CCC とします。2. 解き方の手順sin3(x)\sin^3(x)sin3(x) を sin(x)\sin(x)sin(x) と sin2(x)\sin^2(x)sin2(x) に分けます。そして、sin2(x)=1−cos2(x)\sin^2(x) = 1 - \cos^2(x)sin2(x)=1−cos2(x) を使って変形します。sin3(x)=sin(x)sin2(x)=sin(x)(1−cos2(x))\sin^3(x) = \sin(x) \sin^2(x) = \sin(x) (1 - \cos^2(x))sin3(x)=sin(x)sin2(x)=sin(x)(1−cos2(x))したがって、∫sin3(x)dx=∫sin(x)(1−cos2(x))dx=∫(sin(x)−sin(x)cos2(x))dx\int \sin^3(x) dx = \int \sin(x) (1 - \cos^2(x)) dx = \int (\sin(x) - \sin(x)\cos^2(x)) dx∫sin3(x)dx=∫sin(x)(1−cos2(x))dx=∫(sin(x)−sin(x)cos2(x))dx∫sin(x)dx=−cos(x)+C1\int \sin(x) dx = -\cos(x) + C_1∫sin(x)dx=−cos(x)+C1ここで、u=cos(x)u = \cos(x)u=cos(x) と置換すると、du=−sin(x)dxdu = -\sin(x) dxdu=−sin(x)dx より、∫sin(x)cos2(x)dx=−∫cos2(x)(−sin(x))dx=−∫u2du=−u33+C2=−cos3(x)3+C2\int \sin(x)\cos^2(x) dx = -\int \cos^2(x) (-\sin(x)) dx = -\int u^2 du = -\frac{u^3}{3} + C_2 = -\frac{\cos^3(x)}{3} + C_2∫sin(x)cos2(x)dx=−∫cos2(x)(−sin(x))dx=−∫u2du=−3u3+C2=−3cos3(x)+C2したがって、∫sin3(x)dx=∫sin(x)dx−∫sin(x)cos2(x)dx=−cos(x)−(−cos3(x)3)+C=−cos(x)+cos3(x)3+C\int \sin^3(x) dx = \int \sin(x) dx - \int \sin(x)\cos^2(x) dx = -\cos(x) - (-\frac{\cos^3(x)}{3}) + C = -\cos(x) + \frac{\cos^3(x)}{3} + C∫sin3(x)dx=∫sin(x)dx−∫sin(x)cos2(x)dx=−cos(x)−(−3cos3(x))+C=−cos(x)+3cos3(x)+C3. 最終的な答え−cos(x)+cos3(x)3+C-\cos(x) + \frac{\cos^3(x)}{3} + C−cos(x)+3cos3(x)+C