$x = \cos^3 t$、 $y = \sin^3 t$ のとき、$\frac{dy}{dx}$と$\frac{d^2y}{dx^2}$を求めよ。解析学微分媒介変数表示導関数2025/6/61. 問題の内容x=cos3tx = \cos^3 tx=cos3t、 y=sin3ty = \sin^3 ty=sin3t のとき、dydx\frac{dy}{dx}dxdyとd2ydx2\frac{d^2y}{dx^2}dx2d2yを求めよ。2. 解き方の手順まず、dydt\frac{dy}{dt}dtdyとdxdt\frac{dx}{dt}dtdxを計算します。dydt=ddt(sin3t)=3sin2t⋅cost\frac{dy}{dt} = \frac{d}{dt}(\sin^3 t) = 3\sin^2 t \cdot \cos tdtdy=dtd(sin3t)=3sin2t⋅costdxdt=ddt(cos3t)=3cos2t⋅(−sint)=−3cos2tsint\frac{dx}{dt} = \frac{d}{dt}(\cos^3 t) = 3\cos^2 t \cdot (-\sin t) = -3\cos^2 t \sin tdtdx=dtd(cos3t)=3cos2t⋅(−sint)=−3cos2tsint次に、dydx\frac{dy}{dx}dxdyを計算します。dydx=dy/dtdx/dt=3sin2tcost−3cos2tsint=−sintcost=−tant\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3\sin^2 t \cos t}{-3\cos^2 t \sin t} = -\frac{\sin t}{\cos t} = -\tan tdxdy=dx/dtdy/dt=−3cos2tsint3sin2tcost=−costsint=−tant次に、d2ydx2\frac{d^2y}{dx^2}dx2d2yを計算します。d2ydx2=ddx(dydx)=ddx(−tant)=d(−tant)/dtdx/dt\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx}) = \frac{d}{dx}(-\tan t) = \frac{d(-\tan t)/dt}{dx/dt}dx2d2y=dxd(dxdy)=dxd(−tant)=dx/dtd(−tant)/dtd(−tant)dt=−ddt(tant)=−1cos2t\frac{d(-\tan t)}{dt} = -\frac{d}{dt}(\tan t) = -\frac{1}{\cos^2 t}dtd(−tant)=−dtd(tant)=−cos2t1したがって、d2ydx2=−1cos2t−3cos2tsint=13cos4tsint\frac{d^2y}{dx^2} = \frac{-\frac{1}{\cos^2 t}}{-3\cos^2 t \sin t} = \frac{1}{3\cos^4 t \sin t}dx2d2y=−3cos2tsint−cos2t1=3cos4tsint13. 最終的な答えdydx=−tant\frac{dy}{dx} = -\tan tdxdy=−tantd2ydx2=13cos4tsint\frac{d^2y}{dx^2} = \frac{1}{3\cos^4 t \sin t}dx2d2y=3cos4tsint1