集合 $U$, $A$, $B$ が与えられたとき、共通部分 $A \cap B$ と和集合 $A \cup B$ を求めなさい。 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ $A = \{1, 2, 4, 6, 8, 10\}$ $B = \{1, 7, 9\}$

その他集合共通部分和集合集合論
2025/6/6

1. 問題の内容

集合 UU, AA, BB が与えられたとき、共通部分 ABA \cap B と和集合 ABA \cup B を求めなさい。
U={1,2,3,4,5,6,7,8,9,10}U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}
A={1,2,4,6,8,10}A = \{1, 2, 4, 6, 8, 10\}
B={1,7,9}B = \{1, 7, 9\}

2. 解き方の手順

まず、共通部分 ABA \cap B を求めます。これは、集合 AABB の両方に含まれる要素を集めたものです。
AB={xxA かつ xB}A \cap B = \{x \mid x \in A \text{ かつ } x \in B\}
次に、和集合 ABA \cup B を求めます。これは、集合 AA または BB に含まれる要素を集めたものです。
AB={xxA または xB}A \cup B = \{x \mid x \in A \text{ または } x \in B\}
集合 ABA \cap B について、A={1,2,4,6,8,10}A = \{1, 2, 4, 6, 8, 10\}B={1,7,9}B = \{1, 7, 9\} の両方に含まれる要素は 11 です。したがって、
AB={1}A \cap B = \{1\}
集合 ABA \cup B について、A={1,2,4,6,8,10}A = \{1, 2, 4, 6, 8, 10\}B={1,7,9}B = \{1, 7, 9\} の要素をすべて集めると {1,2,4,6,7,8,9,10}\{1, 2, 4, 6, 7, 8, 9, 10\} となります。
AB={1,2,4,6,7,8,9,10}A \cup B = \{1, 2, 4, 6, 7, 8, 9, 10\}

3. 最終的な答え

AB={1}A \cap B = \{1\}
AB={1,2,4,6,7,8,9,10}A \cup B = \{1, 2, 4, 6, 7, 8, 9, 10\}

「その他」の関連問題

$M(a)$ を求める問題です。$0$ と $a + \frac{1}{2}$ の大小関係によって場合分けが与えられており、それぞれの条件における $M(a)$ の値を答える必要があります。

場合分け関数大小関係
2025/7/28

$\tan \frac{\pi}{8}$ の値を求めよ。

三角関数半角の公式角度有理化
2025/7/28

$5.4^n$ の整数部分が3桁であるような整数 $n$ の個数を求める問題です。ただし、$\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ とします。

対数指数不等式数値計算
2025/7/28

$\theta = \frac{11}{6}\pi$ のとき、$\sin \theta$, $\cos \theta$, $\tan \theta$ の値をそれぞれ求める。

三角関数角度sincostan三角比
2025/7/28

(1) $645^\circ$ を弧度法で表す。 (2) $\frac{19}{5}\pi$ を度数法で表す。

三角関数弧度法度数法角度変換
2025/7/28

常用対数 $\log_{10} 2 = 0.3010$ と $\log_{10} 3 = 0.4771$ を用いて、以下の問いに答えます。 (1) $18^{49}$ は何桁の自然数か、また最高位の数...

対数常用対数桁数最高位の数字対数の性質
2025/7/27

$7^{100}$ の桁数と最高位の数字を求める問題です。

対数指数桁数最高位の数字常用対数
2025/7/26

問題文は、与えられた条件の否定を、選択肢ア〜クの中から選び、記号で答えるものです。 (1) $n$は有理数である。 (2) $(x-1)(y-1) = 0$

論理否定数式
2025/7/26

実数全体の集合 $\mathbb{R}$ の部分集合 $A$ と $B$ が次のように与えられています。 $A = \{x \in \mathbb{R} \mid -1 \leq x \leq 4\}...

集合補集合集合演算
2025/7/26

全体集合 $U = \{x | x \text{ は } 0 \leq x \leq 10 \text{ を満たす整数} \}$ の部分集合 $A$, $B$ について、$\overline{A} \...

集合集合演算ベン図集合の問題
2025/7/24