関数 $(x^2+2)\sin(x)$ の4階微分を求める問題です。解析学微分高階微分積の微分2025/6/61. 問題の内容関数 (x2+2)sin(x)(x^2+2)\sin(x)(x2+2)sin(x) の4階微分を求める問題です。2. 解き方の手順積の微分法則を繰り返し利用して微分を計算します。まず、積の微分法則を思い出します。(uv)′=u′v+uv′(uv)' = u'v + uv'(uv)′=u′v+uv′1階微分:((x2+2)sin(x))′=(x2+2)′sin(x)+(x2+2)(sin(x))′((x^2+2)\sin(x))' = (x^2+2)'\sin(x) + (x^2+2)(\sin(x))'((x2+2)sin(x))′=(x2+2)′sin(x)+(x2+2)(sin(x))′=2xsin(x)+(x2+2)cos(x)= 2x\sin(x) + (x^2+2)\cos(x)=2xsin(x)+(x2+2)cos(x)2階微分:(2xsin(x)+(x2+2)cos(x))′=(2xsin(x))′+((x2+2)cos(x))′(2x\sin(x) + (x^2+2)\cos(x))' = (2x\sin(x))' + ((x^2+2)\cos(x))'(2xsin(x)+(x2+2)cos(x))′=(2xsin(x))′+((x2+2)cos(x))′=(2sin(x)+2xcos(x))+(2xcos(x)+(x2+2)(−sin(x)))= (2\sin(x) + 2x\cos(x)) + (2x\cos(x) + (x^2+2)(-\sin(x)))=(2sin(x)+2xcos(x))+(2xcos(x)+(x2+2)(−sin(x)))=2sin(x)+2xcos(x)+2xcos(x)−(x2+2)sin(x)= 2\sin(x) + 2x\cos(x) + 2x\cos(x) - (x^2+2)\sin(x)=2sin(x)+2xcos(x)+2xcos(x)−(x2+2)sin(x)=2sin(x)+4xcos(x)−x2sin(x)−2sin(x)= 2\sin(x) + 4x\cos(x) - x^2\sin(x) - 2\sin(x)=2sin(x)+4xcos(x)−x2sin(x)−2sin(x)=4xcos(x)−x2sin(x)= 4x\cos(x) - x^2\sin(x)=4xcos(x)−x2sin(x)3階微分:(4xcos(x)−x2sin(x))′=(4xcos(x))′−(x2sin(x))′(4x\cos(x) - x^2\sin(x))' = (4x\cos(x))' - (x^2\sin(x))'(4xcos(x)−x2sin(x))′=(4xcos(x))′−(x2sin(x))′=(4cos(x)+4x(−sin(x)))−(2xsin(x)+x2cos(x))= (4\cos(x) + 4x(-\sin(x))) - (2x\sin(x) + x^2\cos(x))=(4cos(x)+4x(−sin(x)))−(2xsin(x)+x2cos(x))=4cos(x)−4xsin(x)−2xsin(x)−x2cos(x)= 4\cos(x) - 4x\sin(x) - 2x\sin(x) - x^2\cos(x)=4cos(x)−4xsin(x)−2xsin(x)−x2cos(x)=4cos(x)−6xsin(x)−x2cos(x)= 4\cos(x) - 6x\sin(x) - x^2\cos(x)=4cos(x)−6xsin(x)−x2cos(x)4階微分:(4cos(x)−6xsin(x)−x2cos(x))′=(4cos(x))′−(6xsin(x))′−(x2cos(x))′(4\cos(x) - 6x\sin(x) - x^2\cos(x))' = (4\cos(x))' - (6x\sin(x))' - (x^2\cos(x))'(4cos(x)−6xsin(x)−x2cos(x))′=(4cos(x))′−(6xsin(x))′−(x2cos(x))′=−4sin(x)−(6sin(x)+6xcos(x))−(2xcos(x)+x2(−sin(x)))= -4\sin(x) - (6\sin(x) + 6x\cos(x)) - (2x\cos(x) + x^2(-\sin(x)))=−4sin(x)−(6sin(x)+6xcos(x))−(2xcos(x)+x2(−sin(x)))=−4sin(x)−6sin(x)−6xcos(x)−2xcos(x)+x2sin(x)= -4\sin(x) - 6\sin(x) - 6x\cos(x) - 2x\cos(x) + x^2\sin(x)=−4sin(x)−6sin(x)−6xcos(x)−2xcos(x)+x2sin(x)=−10sin(x)−8xcos(x)+x2sin(x)= -10\sin(x) - 8x\cos(x) + x^2\sin(x)=−10sin(x)−8xcos(x)+x2sin(x)=(x2−10)sin(x)−8xcos(x)= (x^2-10)\sin(x) - 8x\cos(x)=(x2−10)sin(x)−8xcos(x)3. 最終的な答え(x2−10)sin(x)−8xcos(x)(x^2-10)\sin(x) - 8x\cos(x)(x2−10)sin(x)−8xcos(x)