次の和を求めよ。 $\sum_{k=1}^{n} (k^2 + k)$代数学数列シグマ和の公式2025/6/61. 問題の内容次の和を求めよ。∑k=1n(k2+k)\sum_{k=1}^{n} (k^2 + k)∑k=1n(k2+k)2. 解き方の手順∑k=1n(k2+k)=∑k=1nk2+∑k=1nk\sum_{k=1}^{n} (k^2 + k) = \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k∑k=1n(k2+k)=∑k=1nk2+∑k=1nk∑k=1nk2=16n(n+1)(2n+1)\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)∑k=1nk2=61n(n+1)(2n+1)∑k=1nk=12n(n+1)\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)∑k=1nk=21n(n+1)したがって、∑k=1n(k2+k)=16n(n+1)(2n+1)+12n(n+1)\sum_{k=1}^{n} (k^2 + k) = \frac{1}{6}n(n+1)(2n+1) + \frac{1}{2}n(n+1)∑k=1n(k2+k)=61n(n+1)(2n+1)+21n(n+1)=16n(n+1)(2n+1+3)= \frac{1}{6}n(n+1)(2n+1+3)=61n(n+1)(2n+1+3)=16n(n+1)(2n+4)= \frac{1}{6}n(n+1)(2n+4)=61n(n+1)(2n+4)=16n(n+1)⋅2(n+2)= \frac{1}{6}n(n+1) \cdot 2(n+2)=61n(n+1)⋅2(n+2)=13n(n+1)(n+2)= \frac{1}{3}n(n+1)(n+2)=31n(n+1)(n+2)3. 最終的な答え13n(n+1)(n+2)\frac{1}{3}n(n+1)(n+2)31n(n+1)(n+2)