数列 $\{a_n\}$ が $a_1 + 2a_2 + 3a_3 + \dots + na_n = \frac{1}{6}n(n+1)(2n+1)$ を満たすとき、$a_1 + a_2 + a_3 + \dots + a_n$ を求めよ。代数学数列和シグマ2025/6/61. 問題の内容数列 {an}\{a_n\}{an} が a1+2a2+3a3+⋯+nan=16n(n+1)(2n+1)a_1 + 2a_2 + 3a_3 + \dots + na_n = \frac{1}{6}n(n+1)(2n+1)a1+2a2+3a3+⋯+nan=61n(n+1)(2n+1) を満たすとき、a1+a2+a3+⋯+ana_1 + a_2 + a_3 + \dots + a_na1+a2+a3+⋯+an を求めよ。2. 解き方の手順与えられた式を Sn=a1+2a2+3a3+⋯+nan=16n(n+1)(2n+1)S_n = a_1 + 2a_2 + 3a_3 + \dots + na_n = \frac{1}{6}n(n+1)(2n+1)Sn=a1+2a2+3a3+⋯+nan=61n(n+1)(2n+1) とおく。Sn=16n(n+1)(2n+1)S_n = \frac{1}{6}n(n+1)(2n+1)Sn=61n(n+1)(2n+1)n=1n=1n=1 のとき、S1=a1=16(1)(2)(3)=1S_1 = a_1 = \frac{1}{6}(1)(2)(3) = 1S1=a1=61(1)(2)(3)=1a1=1a_1 = 1a1=1n≥2n \ge 2n≥2 のとき、Sn−1=a1+2a2+⋯+(n−1)an−1=16(n−1)n(2(n−1)+1)=16(n−1)n(2n−1)S_{n-1} = a_1 + 2a_2 + \dots + (n-1)a_{n-1} = \frac{1}{6}(n-1)n(2(n-1)+1) = \frac{1}{6}(n-1)n(2n-1)Sn−1=a1+2a2+⋯+(n−1)an−1=61(n−1)n(2(n−1)+1)=61(n−1)n(2n−1)Sn−Sn−1=nanS_n - S_{n-1} = na_nSn−Sn−1=nan より、nan=16n(n+1)(2n+1)−16(n−1)n(2n−1)na_n = \frac{1}{6}n(n+1)(2n+1) - \frac{1}{6}(n-1)n(2n-1)nan=61n(n+1)(2n+1)−61(n−1)n(2n−1)nan=16n[(n+1)(2n+1)−(n−1)(2n−1)]na_n = \frac{1}{6}n[(n+1)(2n+1) - (n-1)(2n-1)]nan=61n[(n+1)(2n+1)−(n−1)(2n−1)]nan=16n[2n2+3n+1−(2n2−3n+1)]na_n = \frac{1}{6}n[2n^2 + 3n + 1 - (2n^2 - 3n + 1)]nan=61n[2n2+3n+1−(2n2−3n+1)]nan=16n[6n]na_n = \frac{1}{6}n[6n]nan=61n[6n]nan=n2na_n = n^2nan=n2an=na_n = nan=nこれは n=1n=1n=1 のときも成り立つ。したがって、an=na_n = nan=n となる。求めたい和は∑k=1nak=∑k=1nk=n(n+1)2\sum_{k=1}^n a_k = \sum_{k=1}^n k = \frac{n(n+1)}{2}∑k=1nak=∑k=1nk=2n(n+1)3. 最終的な答えn(n+1)2\frac{n(n+1)}{2}2n(n+1)