与えられた式 $(x^2)^3 - (y^2)^3$ を因数分解します。代数学因数分解多項式べき乗2025/3/271. 問題の内容与えられた式 (x2)3−(y2)3(x^2)^3 - (y^2)^3(x2)3−(y2)3 を因数分解します。2. 解き方の手順まず、べき乗の法則 (am)n=amn(a^m)^n = a^{mn}(am)n=amn を用いて式を簡略化します。(x2)3=x2∗3=x6(x^2)^3 = x^{2*3} = x^6(x2)3=x2∗3=x6(y2)3=y2∗3=y6(y^2)^3 = y^{2*3} = y^6(y2)3=y2∗3=y6したがって、与えられた式は x6−y6x^6 - y^6x6−y6 となります。次に、x6−y6x^6 - y^6x6−y6 を因数分解します。これは、a2−b2=(a−b)(a+b)a^2 - b^2 = (a - b)(a + b)a2−b2=(a−b)(a+b) および a3−b3=(a−b)(a2+ab+b2)a^3 - b^3 = (a - b)(a^2 + ab + b^2)a3−b3=(a−b)(a2+ab+b2) の因数分解公式を利用できます。x6−y6=(x3)2−(y3)2=(x3−y3)(x3+y3)x^6 - y^6 = (x^3)^2 - (y^3)^2 = (x^3 - y^3)(x^3 + y^3)x6−y6=(x3)2−(y3)2=(x3−y3)(x3+y3)さらに、x3−y3x^3 - y^3x3−y3 と x3+y3x^3 + y^3x3+y3 を因数分解します。x3−y3=(x−y)(x2+xy+y2)x^3 - y^3 = (x - y)(x^2 + xy + y^2)x3−y3=(x−y)(x2+xy+y2)x3+y3=(x+y)(x2−xy+y2)x^3 + y^3 = (x + y)(x^2 - xy + y^2)x3+y3=(x+y)(x2−xy+y2)したがって、x6−y6=(x−y)(x2+xy+y2)(x+y)(x2−xy+y2)x^6 - y^6 = (x - y)(x^2 + xy + y^2)(x + y)(x^2 - xy + y^2)x6−y6=(x−y)(x2+xy+y2)(x+y)(x2−xy+y2)これを整理すると、x6−y6=(x−y)(x+y)(x2+xy+y2)(x2−xy+y2)x^6 - y^6 = (x - y)(x + y)(x^2 + xy + y^2)(x^2 - xy + y^2)x6−y6=(x−y)(x+y)(x2+xy+y2)(x2−xy+y2)また、x6−y6=(x2)3−(y2)3x^6-y^6 = (x^2)^3 - (y^2)^3x6−y6=(x2)3−(y2)3と見ると、a3−b3=(a−b)(a2+ab+b2)a^3-b^3 = (a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2)の公式より、x6−y6=(x2−y2)((x2)2+x2y2+(y2)2)x^6 - y^6 = (x^2-y^2)((x^2)^2+x^2y^2+(y^2)^2)x6−y6=(x2−y2)((x2)2+x2y2+(y2)2)x6−y6=(x−y)(x+y)(x4+x2y2+y4)x^6 - y^6 = (x-y)(x+y)(x^4+x^2y^2+y^4)x6−y6=(x−y)(x+y)(x4+x2y2+y4)ここで、x4+x2y2+y4=x4+2x2y2+y4−x2y2=(x2+y2)2−(xy)2=(x2+xy+y2)(x2−xy+y2)x^4+x^2y^2+y^4 = x^4+2x^2y^2+y^4 - x^2y^2 = (x^2+y^2)^2 - (xy)^2 = (x^2+xy+y^2)(x^2-xy+y^2)x4+x2y2+y4=x4+2x2y2+y4−x2y2=(x2+y2)2−(xy)2=(x2+xy+y2)(x2−xy+y2)なので、x6−y6=(x−y)(x+y)(x2+xy+y2)(x2−xy+y2)x^6-y^6 = (x-y)(x+y)(x^2+xy+y^2)(x^2-xy+y^2)x6−y6=(x−y)(x+y)(x2+xy+y2)(x2−xy+y2)3. 最終的な答え(x−y)(x+y)(x2+xy+y2)(x2−xy+y2)(x - y)(x + y)(x^2 + xy + y^2)(x^2 - xy + y^2)(x−y)(x+y)(x2+xy+y2)(x2−xy+y2)