与えられた3x3行列 $ \begin{pmatrix} 3 & 2 & 1 \\ -5 & 7 & 2 \\ 9 & 11 & 5 \end{pmatrix} $ の逆行列を求めます。

代数学行列逆行列行列式余因子行列
2025/6/7

1. 問題の内容

与えられた3x3行列
\begin{pmatrix}
3 & 2 & 1 \\
-5 & 7 & 2 \\
9 & 11 & 5
\end{pmatrix}
の逆行列を求めます。

2. 解き方の手順

まず、与えられた行列をAAとおきます。
A = \begin{pmatrix}
3 & 2 & 1 \\
-5 & 7 & 2 \\
9 & 11 & 5
\end{pmatrix}
次に、行列AAの行列式det(A)det(A)を計算します。
det(A) = 3(7 \cdot 5 - 2 \cdot 11) - 2(-5 \cdot 5 - 2 \cdot 9) + 1(-5 \cdot 11 - 7 \cdot 9) \\
= 3(35 - 22) - 2(-25 - 18) + (-55 - 63) \\
= 3(13) - 2(-43) + (-118) \\
= 39 + 86 - 118 \\
= 125 - 118 \\
= 7
行列式det(A)det(A)は7です。
次に、余因子行列CCを計算します。
C_{11} = 7 \cdot 5 - 2 \cdot 11 = 35 - 22 = 13 \\
C_{12} = -(-5 \cdot 5 - 2 \cdot 9) = -(-25 - 18) = 43 \\
C_{13} = -5 \cdot 11 - 7 \cdot 9 = -55 - 63 = -118 \\
C_{21} = -(2 \cdot 5 - 1 \cdot 11) = -(10 - 11) = 1 \\
C_{22} = 3 \cdot 5 - 1 \cdot 9 = 15 - 9 = 6 \\
C_{23} = -(3 \cdot 11 - 2 \cdot 9) = -(33 - 18) = -15 \\
C_{31} = 2 \cdot 2 - 1 \cdot 7 = 4 - 7 = -3 \\
C_{32} = -(3 \cdot 2 - 1 \cdot (-5)) = -(6 + 5) = -11 \\
C_{33} = 3 \cdot 7 - 2 \cdot (-5) = 21 + 10 = 31
したがって、余因子行列CC
C = \begin{pmatrix}
13 & 43 & -118 \\
1 & 6 & -15 \\
-3 & -11 & 31
\end{pmatrix}
次に、余因子行列の転置行列(随伴行列)adj(A)=CTadj(A) = C^Tを計算します。
adj(A) = \begin{pmatrix}
13 & 1 & -3 \\
43 & 6 & -11 \\
-118 & -15 & 31
\end{pmatrix}
最後に、逆行列A1A^{-1}を計算します。
A^{-1} = \frac{1}{det(A)}adj(A) = \frac{1}{7}\begin{pmatrix}
13 & 1 & -3 \\
43 & 6 & -11 \\
-118 & -15 & 31
\end{pmatrix}
= \begin{pmatrix}
13/7 & 1/7 & -3/7 \\
43/7 & 6/7 & -11/7 \\
-118/7 & -15/7 & 31/7
\end{pmatrix}

3. 最終的な答え

A^{-1} = \begin{pmatrix}
13/7 & 1/7 & -3/7 \\
43/7 & 6/7 & -11/7 \\
-118/7 & -15/7 & 31/7
\end{pmatrix}

「代数学」の関連問題

2次方程式 $x^2 - kx + k + 3 = 0$ が異なる2つの負の解を持つような定数 $k$ の値の範囲を求めよ。

二次方程式解の範囲判別式解と係数の関係
2025/6/7

ベクトル $\vec{a} = (4, 3)$ と $\vec{b} = (x, -2)$ が与えられたとき、以下の問いに答える。 (1) $\vec{a} + \vec{b}$ と $\vec{a}...

ベクトルベクトルの平行ベクトルの垂直内積
2025/6/7

与えられた連立不等式 $x^2+5x < 0$ $x^2+4x-12 < 0$ を満たすxの範囲を求める。

連立不等式二次不等式因数分解
2025/6/7

与えられた連立一次方程式を行列とベクトルを用いて表現すること。 連立一次方程式は以下の通りです。 $2x + y + z = 1$ $x + y + z = 0$

線形代数連立一次方程式行列ベクトル
2025/6/7

与えられた二つの行列の積を計算する問題です。具体的には、3x3の行列 $\begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 2 & 3 \end{pmatri...

行列行列の積線形代数
2025/6/7

課題1:行列の積を計算する問題です。具体的には、 $ \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 2 & 3 \end{pmatrix} \begin...

行列行列の積連立一次方程式線形代数
2025/6/7

与えられた数式 $(8)(\sqrt{10} - \sqrt{3})(\sqrt{10} + \sqrt{3})$ を計算しなさい。

計算平方根式の展開有理化
2025/6/7

$(\sqrt{3} + \sqrt{5})^2$ を計算せよ。

式の展開平方根計算
2025/6/7

問題は、 $(\sqrt{3}+\sqrt{5})^2 = (\sqrt{\Box})^2$ の $\Box$ に入る数字を求める問題と、 $(\sqrt{10} - \sqrt{3})(\sqrt{...

平方根式の展開有理化計算
2025/6/7

等差数列の問題です。 (1) $S_{10} = 100$, $S_{20} = 400$ の情報から、初項 $a$ と公差 $d$ を求め、それらを用いて $S_n$ を表す式を導出します。さらに、...

等差数列数列の和等差数列の和の公式
2025/6/7