## 1. 問題の内容代数学式の計算有理化平方根代数2025/6/7##1. 問題の内容x=25+3x = \frac{2}{\sqrt{5} + \sqrt{3}}x=5+32、 y=25−3y = \frac{2}{\sqrt{5} - \sqrt{3}}y=5−32 のとき、以下の式の値を求めよ。(1) x+yx+yx+y(2) xyxyxy(3) x2+y2x^2 + y^2x2+y2(4) yx+xy\frac{y}{x} + \frac{x}{y}xy+yx(5) x2y+xy2x^2y + xy^2x2y+xy2##2. 解き方の手順まず、xxxとyyyをそれぞれ有理化します。x=25+3=2(5−3)(5+3)(5−3)=2(5−3)5−3=2(5−3)2=5−3x = \frac{2}{\sqrt{5} + \sqrt{3}} = \frac{2(\sqrt{5} - \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})} = \frac{2(\sqrt{5} - \sqrt{3})}{5 - 3} = \frac{2(\sqrt{5} - \sqrt{3})}{2} = \sqrt{5} - \sqrt{3}x=5+32=(5+3)(5−3)2(5−3)=5−32(5−3)=22(5−3)=5−3y=25−3=2(5+3)(5−3)(5+3)=2(5+3)5−3=2(5+3)2=5+3y = \frac{2}{\sqrt{5} - \sqrt{3}} = \frac{2(\sqrt{5} + \sqrt{3})}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})} = \frac{2(\sqrt{5} + \sqrt{3})}{5 - 3} = \frac{2(\sqrt{5} + \sqrt{3})}{2} = \sqrt{5} + \sqrt{3}y=5−32=(5−3)(5+3)2(5+3)=5−32(5+3)=22(5+3)=5+3これで、xxxとyyyが簡単に表せました。(1) x+y=(5−3)+(5+3)=25x + y = (\sqrt{5} - \sqrt{3}) + (\sqrt{5} + \sqrt{3}) = 2\sqrt{5}x+y=(5−3)+(5+3)=25(2) xy=(5−3)(5+3)=5−3=2xy = (\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3}) = 5 - 3 = 2xy=(5−3)(5+3)=5−3=2(3) x2+y2=(x+y)2−2xy=(25)2−2(2)=20−4=16x^2 + y^2 = (x+y)^2 - 2xy = (2\sqrt{5})^2 - 2(2) = 20 - 4 = 16x2+y2=(x+y)2−2xy=(25)2−2(2)=20−4=16(4) yx+xy=y2+x2xy=x2+y2xy=162=8\frac{y}{x} + \frac{x}{y} = \frac{y^2 + x^2}{xy} = \frac{x^2 + y^2}{xy} = \frac{16}{2} = 8xy+yx=xyy2+x2=xyx2+y2=216=8(5) x2y+xy2=xy(x+y)=2(25)=45x^2y + xy^2 = xy(x+y) = 2(2\sqrt{5}) = 4\sqrt{5}x2y+xy2=xy(x+y)=2(25)=45##3. 最終的な答え(1) x+y=25x + y = 2\sqrt{5}x+y=25(2) xy=2xy = 2xy=2(3) x2+y2=16x^2 + y^2 = 16x2+y2=16(4) yx+xy=8\frac{y}{x} + \frac{x}{y} = 8xy+yx=8(5) x2y+xy2=45x^2y + xy^2 = 4\sqrt{5}x2y+xy2=45