与えられた関数について、$x=2$ における微分係数を、定義に従って求めます。関数は2つあります。 (1) $f(x) = \frac{1}{x+4}$ (2) $f(x) = -\sqrt{x}$解析学微分微分係数関数の微分極限2025/6/71. 問題の内容与えられた関数について、x=2x=2x=2 における微分係数を、定義に従って求めます。関数は2つあります。(1) f(x)=1x+4f(x) = \frac{1}{x+4}f(x)=x+41(2) f(x)=−xf(x) = -\sqrt{x}f(x)=−x2. 解き方の手順微分係数の定義は以下の通りです。f′(a)=limh→0f(a+h)−f(a)hf'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}f′(a)=limh→0hf(a+h)−f(a)(1) f(x)=1x+4f(x) = \frac{1}{x+4}f(x)=x+41 の場合f(2)=12+4=16f(2) = \frac{1}{2+4} = \frac{1}{6}f(2)=2+41=61f(2+h)=12+h+4=16+hf(2+h) = \frac{1}{2+h+4} = \frac{1}{6+h}f(2+h)=2+h+41=6+h1f′(2)=limh→0f(2+h)−f(2)h=limh→016+h−16h=limh→06−(6+h)6(6+h)h=limh→0−h6h(6+h)=limh→0−16(6+h)=−16(6+0)=−136f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{\frac{1}{6+h} - \frac{1}{6}}{h} = \lim_{h \to 0} \frac{\frac{6 - (6+h)}{6(6+h)}}{h} = \lim_{h \to 0} \frac{-h}{6h(6+h)} = \lim_{h \to 0} \frac{-1}{6(6+h)} = \frac{-1}{6(6+0)} = -\frac{1}{36}f′(2)=limh→0hf(2+h)−f(2)=limh→0h6+h1−61=limh→0h6(6+h)6−(6+h)=limh→06h(6+h)−h=limh→06(6+h)−1=6(6+0)−1=−361(2) f(x)=−xf(x) = -\sqrt{x}f(x)=−x の場合f(2)=−2f(2) = -\sqrt{2}f(2)=−2f(2+h)=−2+hf(2+h) = -\sqrt{2+h}f(2+h)=−2+hf′(2)=limh→0f(2+h)−f(2)h=limh→0−2+h−(−2)h=limh→0−2+h+2hf'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{-\sqrt{2+h} - (-\sqrt{2})}{h} = \lim_{h \to 0} \frac{-\sqrt{2+h} + \sqrt{2}}{h}f′(2)=limh→0hf(2+h)−f(2)=limh→0h−2+h−(−2)=limh→0h−2+h+2分子を有理化します。f′(2)=limh→0(−2+h+2)(2+h+2)h(2+h+2)=limh→0−(2+h)+2h(2+h+2)=limh→0−hh(2+h+2)=limh→0−12+h+2=−12+0+2=−122=−24f'(2) = \lim_{h \to 0} \frac{(-\sqrt{2+h} + \sqrt{2})(\sqrt{2+h} + \sqrt{2})}{h(\sqrt{2+h} + \sqrt{2})} = \lim_{h \to 0} \frac{-(2+h) + 2}{h(\sqrt{2+h} + \sqrt{2})} = \lim_{h \to 0} \frac{-h}{h(\sqrt{2+h} + \sqrt{2})} = \lim_{h \to 0} \frac{-1}{\sqrt{2+h} + \sqrt{2}} = \frac{-1}{\sqrt{2+0} + \sqrt{2}} = \frac{-1}{2\sqrt{2}} = -\frac{\sqrt{2}}{4}f′(2)=limh→0h(2+h+2)(−2+h+2)(2+h+2)=limh→0h(2+h+2)−(2+h)+2=limh→0h(2+h+2)−h=limh→02+h+2−1=2+0+2−1=22−1=−423. 最終的な答え(1) f′(2)=−136f'(2) = -\frac{1}{36}f′(2)=−361(2) f′(2)=−24f'(2) = -\frac{\sqrt{2}}{4}f′(2)=−42