あるクラスの生徒30人の休日の学習時間を調べた度数分布表が与えられている。学習時間の平均値が3時間であるとき、度数分布表の空欄(0~2時間の人数と6~8時間の人数)にあてはまる数を求める問題。

確率論・統計学度数分布平均連立方程式統計
2025/6/7

1. 問題の内容

あるクラスの生徒30人の休日の学習時間を調べた度数分布表が与えられている。学習時間の平均値が3時間であるとき、度数分布表の空欄(0~2時間の人数と6~8時間の人数)にあてはまる数を求める問題。

2. 解き方の手順

まず、0~2時間の人数をaa、6~8時間の人数をbbとする。
度数の合計が30人であることから、次の式が成り立つ。
a+12+6+b=30a + 12 + 6 + b = 30
これを整理すると、
a+b=12a + b = 12
次に、平均学習時間を計算するために、各階級の中央値を考える。
0~2時間の中央値は1時間、2~4時間の中央値は3時間、4~6時間の中央値は5時間、6~8時間の中央値は7時間である。
平均学習時間は3時間なので、次の式が成り立つ。
1×a+3×12+5×6+7×b30=3\frac{1 \times a + 3 \times 12 + 5 \times 6 + 7 \times b}{30} = 3
これを整理すると、
a+36+30+7b=90a + 36 + 30 + 7b = 90
a+7b=24a + 7b = 24
a+b=12a + b = 12a+7b=24a + 7b = 24の連立方程式を解く。
a+7b=24a + 7b = 24からa+b=12a + b = 12を引くと、
6b=126b = 12
b=2b = 2
a+b=12a + b = 12b=2b = 2を代入すると、
a+2=12a + 2 = 12
a=10a = 10

3. 最終的な答え

0~2時間の人数: 10人
6~8時間の人数: 2人

「確率論・統計学」の関連問題

1, 2, 3, 4 の数字が書かれた4枚のカードから、重複を許して3枚のカードを取り出して並べてできる3桁の整数は何通りあるかを求める問題です。

組み合わせ場合の数重複組合せ
2025/6/7

大小中3個のサイコロを同時に投げた時、出る目の和が4になる場合の数を求める問題です。

確率場合の数サイコロ
2025/6/7

50人にaとbの2問のクイズを出題した。aを正解した人は27人、bを正解した人は13人、aとbの両方を正解した人は4人である。 (1) aとbの少なくとも一方を正解した人の人数を求めよ。 (2) aも...

集合包除原理確率統計
2025/6/7

男子4人、女子3人が円形のテーブルの周りに座る。 (1) 座り方は全部で何通りあるか。 (2) 女子3人が隣り合う場合は何通りあるか。 (3) 女子が隣り合わない場合は何通りあるか。

順列円順列組み合わせ
2025/6/7

あるクラスの生徒30人の通学時間をまとめた度数分布表があり、通学時間の平均が19分であることがわかっている。表中の空欄(10-20分の人数と30-40分の人数)にあてはまる数を求める。

度数分布平均連立方程式
2025/6/7

あるクラスの生徒40人の通学時間をまとめた表を完成させ、通学時間の平均値を求める問題です。表の一部が空欄になっており、階級値と度数が与えられています。

平均値度数分布データの分析
2025/6/7

大文字A, B, C, D, E の5文字と小文字 a, b, c, d の4文字を1列に並べる場合の数について、以下の条件を満たす並べ方の総数を求める。 (1) 大文字が隣り合う (2) 両端が小文...

順列組み合わせ場合の数条件付き確率
2025/6/7

袋の中に赤玉4個、青玉3個、白玉2個が入っている。この袋から同時に3個の玉を取り出すとき、以下の確率を求める。 (1) 取り出した玉にすべての色が含まれる確率 (2) 取り出した玉の色が2色である確率...

確率組み合わせ条件付き確率
2025/6/7

アンケートの結果が分割表にまとめられています。質問は「30歳までに結婚したいか?」と「デートとアルバイトどちらを優先するか?」です。 (1) オッズ比を求めます。 (2) 30歳までに結婚したいか否か...

オッズ比相関統計的推論分割表
2025/6/7

与えられたデータに基づいて、以下の統計量を計算する問題です。 (1) 変数1と変数2の共分散 (2) 変数1と変数2の相関係数 (3) 変数1と変数3の相関係数 (4) 変数2と変数3の相関係数 (5...

統計相関係数共分散偏相関係数
2025/6/7