与えられた数列の和 $S$ を求める問題です。 $S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}$代数学数列級数等比数列和代数2025/6/7## 68 (2)の問題1. 問題の内容与えられた数列の和 SSS を求める問題です。S=1+4x+7x2+10x3+⋯+(3n−2)xn−1S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}S=1+4x+7x2+10x3+⋯+(3n−2)xn−12. 解き方の手順与えられた数列の和をSSSとおきます。S=1+4x+7x2+10x3+⋯+(3n−2)xn−1S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}S=1+4x+7x2+10x3+⋯+(3n−2)xn−1この式にxxxをかけると、xS=x+4x2+7x3+10x4+⋯+(3n−2)xnxS = x + 4x^2 + 7x^3 + 10x^4 + \dots + (3n-2)x^{n}xS=x+4x2+7x3+10x4+⋯+(3n−2)xn上の式から下の式を引くと、S−xS=1+3x+3x2+3x3+⋯+3xn−1−(3n−2)xnS - xS = 1 + 3x + 3x^2 + 3x^3 + \dots + 3x^{n-1} - (3n-2)x^{n}S−xS=1+3x+3x2+3x3+⋯+3xn−1−(3n−2)xn(1−x)S=1+3x(1+x+x2+⋯+xn−2)−(3n−2)xn(1-x)S = 1 + 3x(1 + x + x^2 + \dots + x^{n-2}) - (3n-2)x^{n}(1−x)S=1+3x(1+x+x2+⋯+xn−2)−(3n−2)xnここで、等比数列の和の公式を利用します。1+x+x2+⋯+xn−2=1−xn−11−x1 + x + x^2 + \dots + x^{n-2} = \frac{1-x^{n-1}}{1-x}1+x+x2+⋯+xn−2=1−x1−xn−1これを代入すると、(1−x)S=1+3x1−xn−11−x−(3n−2)xn(1-x)S = 1 + 3x\frac{1-x^{n-1}}{1-x} - (3n-2)x^{n}(1−x)S=1+3x1−x1−xn−1−(3n−2)xn(1−x)S=1+3x−3xn1−x−(3n−2)xn(1-x)S = 1 + \frac{3x - 3x^n}{1-x} - (3n-2)x^{n}(1−x)S=1+1−x3x−3xn−(3n−2)xn(1−x)2S=(1−x)+3x−3xn−(3n−2)xn(1−x)(1-x)^2 S = (1-x) + 3x - 3x^n - (3n-2)x^n(1-x)(1−x)2S=(1−x)+3x−3xn−(3n−2)xn(1−x)(1−x)2S=1+2x−3xn−(3n−2)xn+(3n−2)xn+1(1-x)^2 S = 1 + 2x - 3x^n - (3n-2)x^n + (3n-2)x^{n+1}(1−x)2S=1+2x−3xn−(3n−2)xn+(3n−2)xn+1(1−x)2S=1+2x−(3n−2+3)xn+(3n−2)xn+1(1-x)^2 S = 1 + 2x - (3n-2+3)x^n + (3n-2)x^{n+1}(1−x)2S=1+2x−(3n−2+3)xn+(3n−2)xn+1(1−x)2S=1+2x−(3n+1)xn+(3n−2)xn+1(1-x)^2 S = 1 + 2x - (3n+1)x^n + (3n-2)x^{n+1}(1−x)2S=1+2x−(3n+1)xn+(3n−2)xn+1したがって、SSSは次のようになります。S=1+2x−(3n+1)xn+(3n−2)xn+1(1−x)2S = \frac{1 + 2x - (3n+1)x^n + (3n-2)x^{n+1}}{(1-x)^2}S=(1−x)21+2x−(3n+1)xn+(3n−2)xn+13. 最終的な答えS=1+2x−(3n+1)xn+(3n−2)xn+1(1−x)2S = \frac{1 + 2x - (3n+1)x^n + (3n-2)x^{n+1}}{(1-x)^2}S=(1−x)21+2x−(3n+1)xn+(3n−2)xn+1