問題は、$(x+4)(x-4) = x^2 - [ア] = x^2 - [ツ]$ という等式において、[ア]と[ツ]に当てはまる数字を求める問題です。

代数学展開因数分解和と差の積計算
2025/6/7

1. 問題の内容

問題は、(x+4)(x4)=x2[]=x2[](x+4)(x-4) = x^2 - [ア] = x^2 - [ツ] という等式において、[ア]と[ツ]に当てはまる数字を求める問題です。

2. 解き方の手順

まず、(x+4)(x4)(x+4)(x-4) を展開します。
これは和と差の積の公式 (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2 を利用できます。
a=xa = xb=4b = 4 とすると、
(x+4)(x4)=x242=x216(x+4)(x-4) = x^2 - 4^2 = x^2 - 16
したがって、[ア]には16が当てはまります。
x216=x2[]x^2 - 16 = x^2 - [ツ] より、[ツ]にも16が当てはまります。

3. 最終的な答え

[ア] = 16
[ツ] = 16

「代数学」の関連問題

カードを何人かの友人に配る。一人当たり5枚ずつ配ると10枚余り、7枚ずつ配ると8枚足りない。このとき、一人当たり5枚ずつ配った場合、全部で何枚配ったかを求める。

方程式文章問題一次方程式数量関係
2025/6/8

行列 $C$ が与えられています。この行列の逆行列を求める問題です。 $C = \begin{bmatrix} 2 & 1 & -3 \\ -1 & 1 & 2 \\ 3 & 0 & -5 \end{...

線形代数行列逆行列行列式
2025/6/8

2次関数 $y = -x^2 - 2mx - 2m - 3$ のグラフについて、以下の条件を満たす定数 $m$ の値の範囲を求める。 (1) $x$ 軸の $x > -4$ の部分と、異なる2点で交わ...

二次関数グラフ判別式不等式
2025/6/8

$V$ はベクトル空間であり、$W_1$ と $W_2$ は $V$ の部分空間である。$W_1 \cup W_2$ が $V$ の部分空間ならば、$W_1 \subseteq W_2$ または $W...

線形代数ベクトル空間部分空間証明
2025/6/8

関数 $y = (-x^2 + 2x)^2 - 4(-x^2 + 2x) + 6$ が与えられている。$t = -x^2 + 2x$ とおいたとき、$t$ のとりうる値の範囲を求める。

二次関数最大値平方完成関数のグラフ
2025/6/8

(a) 与えられた連立一次方程式 $\begin{cases} 3x + 5y = 1 \\ x + 2y = -1 \end{cases}$ を、2x2 行列 $A$ を用いて $Ax = b$ の...

線形代数連立一次方程式行列逆行列
2025/6/8

与えられた式 $\sqrt{(\pi-2)^2} + \sqrt{(\pi-3)^2} + \sqrt{(\pi-4)^2}$ を最も整理された形で表す。ただし、$\pi$ は円周率である。

絶対値式の計算数式整理円周率
2025/6/8

複素数の式 $\frac{\sqrt{3}+i}{\sqrt{3}-i} - \frac{\sqrt{3}-i}{\sqrt{3}+i}$ を計算します。

複素数複素数の計算有理化
2025/6/8

平面上の点 $(x, y)$ を縦ベクトル $\mathbf{a} = \begin{pmatrix} x \\ y \end{pmatrix}$ で表す。行列 $A = \begin{pmatrix...

線形代数行列線形変換行列の積線対称変換図形
2025/6/8

平面 R^2 上の点 $(x, y)$ をベクトル $\mathbf{a} = \begin{pmatrix} x \\ y \end{pmatrix}$ と表す。行列 $A = \begin{pma...

線形代数行列線形変換線対称変換行列の積幾何学
2025/6/8