与えられた式を簡単にします。 (1) $(1+\sqrt{2}-\sqrt{3})^2$ (2) $(\sqrt{2}+\sqrt{5}+\sqrt{7})(\sqrt{2}+\sqrt{5}-\sqrt{7})$代数学式の展開平方根計算2025/6/81. 問題の内容与えられた式を簡単にします。(1) (1+2−3)2(1+\sqrt{2}-\sqrt{3})^2(1+2−3)2(2) (2+5+7)(2+5−7)(\sqrt{2}+\sqrt{5}+\sqrt{7})(\sqrt{2}+\sqrt{5}-\sqrt{7})(2+5+7)(2+5−7)2. 解き方の手順(1) (1+2−3)2(1+\sqrt{2}-\sqrt{3})^2(1+2−3)2 を展開します。(1+2−3)2=(1+2−3)(1+2−3)(1+\sqrt{2}-\sqrt{3})^2 = (1+\sqrt{2}-\sqrt{3})(1+\sqrt{2}-\sqrt{3})(1+2−3)2=(1+2−3)(1+2−3)=1+2−3+2+2−6−3−6+3= 1 + \sqrt{2} - \sqrt{3} + \sqrt{2} + 2 - \sqrt{6} - \sqrt{3} - \sqrt{6} + 3=1+2−3+2+2−6−3−6+3=1+2+3+22−23−26= 1 + 2 + 3 + 2\sqrt{2} - 2\sqrt{3} - 2\sqrt{6}=1+2+3+22−23−26=6+22−23−26= 6 + 2\sqrt{2} - 2\sqrt{3} - 2\sqrt{6}=6+22−23−26(2) (2+5+7)(2+5−7)(\sqrt{2}+\sqrt{5}+\sqrt{7})(\sqrt{2}+\sqrt{5}-\sqrt{7})(2+5+7)(2+5−7) を展開します。(2+5+7)(2+5−7)=((2+5)+7)((2+5)−7)(\sqrt{2}+\sqrt{5}+\sqrt{7})(\sqrt{2}+\sqrt{5}-\sqrt{7}) = ((\sqrt{2}+\sqrt{5})+\sqrt{7})((\sqrt{2}+\sqrt{5})-\sqrt{7})(2+5+7)(2+5−7)=((2+5)+7)((2+5)−7)これは (A+B)(A−B)=A2−B2(A+B)(A-B) = A^2 - B^2(A+B)(A−B)=A2−B2 の形なので、=(2+5)2−(7)2= (\sqrt{2}+\sqrt{5})^2 - (\sqrt{7})^2=(2+5)2−(7)2=(2)2+225+(5)2−7= (\sqrt{2})^2 + 2\sqrt{2}\sqrt{5} + (\sqrt{5})^2 - 7=(2)2+225+(5)2−7=2+210+5−7= 2 + 2\sqrt{10} + 5 - 7=2+210+5−7=7+210−7= 7 + 2\sqrt{10} - 7=7+210−7=210= 2\sqrt{10}=2103. 最終的な答え(1) 6+22−23−266 + 2\sqrt{2} - 2\sqrt{3} - 2\sqrt{6}6+22−23−26(2) 2102\sqrt{10}210