実数 $x$ に対して、条件 $p: -1 \le x \le 1$ と条件 $q: -3 \le x$ が与えられたとき、命題 $p \implies q$ の真偽を、集合を使って調べる問題です。

その他集合命題真偽数直線
2025/6/8

1. 問題の内容

実数 xx に対して、条件 p:1x1p: -1 \le x \le 1 と条件 q:3xq: -3 \le x が与えられたとき、命題 p    qp \implies q の真偽を、集合を使って調べる問題です。

2. 解き方の手順

条件 pp を満たす xx の集合を PP、条件 qq を満たす xx の集合を QQ とします。
P={x1x1}P = \{x \mid -1 \le x \le 1\}
Q={x3x}Q = \{x \mid -3 \le x\}
命題 p    qp \implies q が真であるためには、PQP \subset Q である必要があります。つまり、PP の要素はすべて QQ の要素である必要があります。
数直線で考えると、
PP1-1 から 11 までの区間、
QQ3-3 以上の範囲です。
PP の範囲は QQ の範囲に含まれているため、PQP \subset Q が成り立ちます。
したがって、命題 p    qp \implies q は真です。

3. 最終的な答え

「その他」の関連問題

常用対数表を用いて、以下の常用対数の値を求めなさい。 (1) $\log_{10} 6.08$ (2) $\log_{10} 2.22$

対数常用対数対数表計算
2025/7/21

問題は、$\sin(-30^\circ)$と$\cos(-30^\circ)$の値をそれぞれ選択肢の中から選ぶ問題です。

三角関数三角比角度sincos
2025/7/21

全体集合 $U$ とその部分集合 $A, B$ について、与えられた条件のもとで、$n(A \cap B)$ の最大値と最小値を求める問題です。 (1) $n(U) = 50, n(A) = 23, ...

集合集合の要素数最大値最小値
2025/7/21

正四角錐と正三角柱の各面を、異なる5色すべてを使って塗り分ける方法の数を求めます。ただし、立体を回転させて一致する塗り方は同じとみなします。 (1) 正四角錐の場合 (2) 正三角柱の場合

場合の数組み合わせ回転空間図形正四角錐正三角柱円順列
2025/7/21

(1) $\frac{1}{\sqrt{15}+\sqrt{16}}$ を簡単にし、$\sum_{n=16}^{80} \frac{1}{\sqrt{n}+\sqrt{n+1}}$ を計算する。 (2...

数式処理平方根数列関数三角比図形有理化正弦定理整数の性質
2025/7/21

画像にある3つの問題を解きます。 (1) $\sin(75^\circ)$ (2) $\cos(-\frac{5}{12}\pi)$ (3) $\frac{1}{\frac{1}{8+12} + \f...

三角関数加法定理分数
2025/7/21

(1) NaClの単位格子の一辺の長さを求める。ただし、Na+のイオン半径は97 pm、Cl-のイオン半径は181 pmとする。 (2) NaClの密度を求める。ただし、Na+のモル質量は23.0 g...

物理化学結晶構造密度アボガドロ定数単位格子
2025/7/21

6人の生徒が手をつないで1つの輪を作るとき、生徒の並び方の総数を求める問題です。

順列円順列組み合わせ
2025/7/20

全体集合 $U$ とその部分集合 $A$, $B$ があり、$n(U) = 30$, $n(A) = 18$, $n(B) = 21$ である。このとき、$n(A \cap B)$ の最大値と最小値を...

集合集合の要素数最大値最小値
2025/7/20

与えられた2つの命題の真偽を判定し、正しい組み合わせを選択する問題です。 命題(1)は「$n$が21の正の約数ならば、$n$は56の正の約数である」。 命題(2)は「$|x-1|>5$ならば、$|x|...

命題真偽判定論理絶対値約数
2025/7/20