関数 $y = \frac{(x-1)\sqrt{x+1}}{\sqrt{x}}$ の微分を求める問題です。解析学微分関数の微分合成関数の微分積の微分2025/6/81. 問題の内容関数 y=(x−1)x+1xy = \frac{(x-1)\sqrt{x+1}}{\sqrt{x}}y=x(x−1)x+1 の微分を求める問題です。2. 解き方の手順まず、関数 yyy を以下のように書き換えます。y=(x−1)⋅x+1x=(x−1)x+1x=(x−1)1+1xy = (x-1) \cdot \frac{\sqrt{x+1}}{\sqrt{x}} = (x-1) \sqrt{\frac{x+1}{x}} = (x-1) \sqrt{1 + \frac{1}{x}}y=(x−1)⋅xx+1=(x−1)xx+1=(x−1)1+x1次に、yyyを微分します。積の微分公式と合成関数の微分公式を使います。dydx=ddx[(x−1)1+1x]\frac{dy}{dx} = \frac{d}{dx} \left[ (x-1) \sqrt{1 + \frac{1}{x}} \right] dxdy=dxd[(x−1)1+x1]=d(x−1)dx1+1x+(x−1)ddx1+1x= \frac{d(x-1)}{dx} \sqrt{1 + \frac{1}{x}} + (x-1) \frac{d}{dx} \sqrt{1 + \frac{1}{x}} =dxd(x−1)1+x1+(x−1)dxd1+x1=1⋅1+1x+(x−1)⋅121+1x⋅ddx(1+1x)= 1 \cdot \sqrt{1 + \frac{1}{x}} + (x-1) \cdot \frac{1}{2\sqrt{1 + \frac{1}{x}}} \cdot \frac{d}{dx} \left(1 + \frac{1}{x}\right) =1⋅1+x1+(x−1)⋅21+x11⋅dxd(1+x1)=1+1x+(x−1)⋅121+1x⋅(−1x2)= \sqrt{1 + \frac{1}{x}} + (x-1) \cdot \frac{1}{2\sqrt{1 + \frac{1}{x}}} \cdot \left(-\frac{1}{x^2}\right) =1+x1+(x−1)⋅21+x11⋅(−x21)=1+1x−x−12x21+1x= \sqrt{1 + \frac{1}{x}} - \frac{x-1}{2x^2\sqrt{1 + \frac{1}{x}}} =1+x1−2x21+x1x−1=x+1x−x−12x2x+1x= \sqrt{\frac{x+1}{x}} - \frac{x-1}{2x^2\sqrt{\frac{x+1}{x}}} =xx+1−2x2xx+1x−1=x+1x−x−12x2x+1x= \frac{\sqrt{x+1}}{\sqrt{x}} - \frac{x-1}{2x^2\frac{\sqrt{x+1}}{\sqrt{x}}} =xx+1−2x2xx+1x−1=x+1x−x−12x3/2x+1= \frac{\sqrt{x+1}}{\sqrt{x}} - \frac{x-1}{2x^{3/2}\sqrt{x+1}} =xx+1−2x3/2x+1x−1=x+1x−x−12xxx+1= \frac{\sqrt{x+1}}{\sqrt{x}} - \frac{x-1}{2x\sqrt{x}\sqrt{x+1}} =xx+1−2xxx+1x−1=2x(x+1)−(x−1)2xx(x+1)= \frac{2x(x+1) - (x-1)}{2x\sqrt{x(x+1)}} =2xx(x+1)2x(x+1)−(x−1)=2x2+2x−x+12xx(x+1)= \frac{2x^2+2x - x + 1}{2x\sqrt{x(x+1)}} =2xx(x+1)2x2+2x−x+1=2x2+x+12xx(x+1)= \frac{2x^2+x+1}{2x\sqrt{x(x+1)}} =2xx(x+1)2x2+x+1=2x2+x+12xx2+x= \frac{2x^2+x+1}{2x\sqrt{x^2+x}}=2xx2+x2x2+x+13. 最終的な答えdydx=2x2+x+12xx2+x\frac{dy}{dx} = \frac{2x^2+x+1}{2x\sqrt{x^2+x}}dxdy=2xx2+x2x2+x+1